Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
https://doi.org/10.1142/S0129183124500268Cited by:2 (Source: Crossref)

This research is focused on the examination of an unsteady flow of an electromagnetic nanofluid close to a stagnation point over an expanded sheet kept horizontally. Buongiorno’s nanofluid model is revised with the combined influence of the externally applied electric and magnetic fluxes. Moreover, the underneath surface offers multiple slips into the nanofluid flow. The leading partial differential equations (PDE) are renovated to the nonlinear ordinary differential equations (ODE) with the assistance of similarity transformations. Thus, the outcomes are received numerically by using the RK-6 with Nachtsheim–Swigert shooting technique. The enlistment of the outcomes for the momentum, energy and concentration profiles along with the skin-friction coefficient (Cfx), Nusselt number (Nux) and Sherwood number (Shx) for several parametric values are presented in a graphical and tabular form and discussed in detail. The variation of streamlines with respect to the unsteadiness parameter is also recorded. Statistical inspection reveals that the flow parameters are highly correlated with the wall shear stress, wall heat and mass fluxes. Findings indicate that the escalation of electric flux tries to intensify the hydrodynamic boundary layer meanwhile the magnetic flux assists to stabilize the growth by reducing it for both the steady and unsteady flow patterns. Influence of velocity slip parameter ξ from 0.0 to 1.5 causes the reduction in Nux by 16.98% for steady flow while 60.27% for time-dependent flow case. Moreover, we expect that these theoretical findings are very much helpful for several engineering and industrial applications such as polymer sheet productions, manufacturing automobile machines, cooling microelectronic chips, etc.

PACS: 76W05, 76V05
You currently do not have access to the full text article.

Recommend the journal to your library today!