World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

COMPARATIVE STUDY OF SPANNING CLUSTER DISTRIBUTIONS IN DIFFERENT DIMENSIONS

    https://doi.org/10.1142/S0129183199000565Cited by:10 (Source: Crossref)

    The probability distributions of the masses of the clusters spanning from top to bottom of a percolating lattice at the percolation threshold are obtained in all dimensions, from two to five. The first two cumulants and the exponents for the universal scaling functions are shown to have simple power law variations with the dimensionality. The cases where multiple spanning clusters occur are discussed separately and compared.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!