World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

USING HARDWARE MULTITHREADING TO OVERCOME BROADCAST/REDUCTION LATENCY IN AN ASSOCIATIVE SIMD PROCESSOR

    https://doi.org/10.1142/S0129626408003533Cited by:1 (Source: Crossref)

    The latency of broadcast/reduction operations has a significant impact on the performance of SIMD processors. This is especially true for associative programs, which make extensive use of global search operations. Previously, we developed a prototype associative SIMD processor that uses hardware multithreading to overcome the broadcast/reduction latency. In this paper we show, through simulations of the processor running an associative program, that hardware multithreading is able to improve performance by increasing system utilization, even for processors with hundreds or thousands of processing elements. However, the choice of thread scheduling policy used by the hardware is critical in determining the actual utilization achieved. We consider three thread scheduling policies and show that a thread scheduler that avoids issuing threads that will stall due to pipeline dependencies or thread synchronization operations is able to maintain system utilization independent of the number of threads.