World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The Aqueous Extract of Radix Glycyrrhizae Stimulates Mitogen-Activated Protein Kinases and Nuclear Factor-κB in Jurkat T-Cells and THP-1 Monocytic Cells

    https://doi.org/10.1142/S0192415X06003813Cited by:8 (Source: Crossref)

    Radix Glycyrrhizae (RG) is a medicinal herb extensively utilized in numerous Chinese medical formulae for coordinating the actions of various components in the recipes and strengthening the body functions. In this report, we demonstrate that the aqueous extract of Radix Glycyrrhizae is capable of stimulating the c-Jun N-terminal kinase and p38 subgroups of mitogen-activated protein kinases (MAPKs), and the nuclear factor-κB (NFκB) in Jurkat T-lymphocytes. The activation magnitudes of MAPKs and NFκB were dose-dependent (EC50 ≈ 1 mg/ml) and time-dependent (maximal around 15–30 minutes). Stimulations of MAPKs and NFκB were not associated with changes in intracellular Ca2+ mobilization. Similar activation profiles of MAPK and NFκB were obtained from THP-1 monocytes treated with the extract. In terms of chemotactic activity, the SDF-induced chemotaxis of Jurkat cells and THP-1 cells were inhibited by RG extract at 1–10 mg/ml, while a lower RG concentration (0.1–0.3 mg/ml) potentiated the SDF-induced chemotaxis for the former, but not the latter cell type. Given the fact that MAPKs and NFκB are important signaling intermediates for lymphocyte activities, our results suggest that Radix Glycyrrhizae may contain active constituents capable of modulating immuno-responses through various intracellular signaling pathways.