Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Radix Glycyrrhizae (RG) is a medicinal herb extensively utilized in numerous Chinese medical formulae for coordinating the actions of various components in the recipes and strengthening the body functions. In this report, we demonstrate that the aqueous extract of Radix Glycyrrhizae is capable of stimulating the c-Jun N-terminal kinase and p38 subgroups of mitogen-activated protein kinases (MAPKs), and the nuclear factor-κB (NFκB) in Jurkat T-lymphocytes. The activation magnitudes of MAPKs and NFκB were dose-dependent (EC50 ≈ 1 mg/ml) and time-dependent (maximal around 15–30 minutes). Stimulations of MAPKs and NFκB were not associated with changes in intracellular Ca2+ mobilization. Similar activation profiles of MAPK and NFκB were obtained from THP-1 monocytes treated with the extract. In terms of chemotactic activity, the SDF-induced chemotaxis of Jurkat cells and THP-1 cells were inhibited by RG extract at 1–10 mg/ml, while a lower RG concentration (0.1–0.3 mg/ml) potentiated the SDF-induced chemotaxis for the former, but not the latter cell type. Given the fact that MAPKs and NFκB are important signaling intermediates for lymphocyte activities, our results suggest that Radix Glycyrrhizae may contain active constituents capable of modulating immuno-responses through various intracellular signaling pathways.
Schizonepeta tenuifolia (ST) is a well-known herb to treat the cold and its associated headache. However, the anti-inflammatory mechanism of ST in mouse peritoneal macrophages is not clear. In this study, we demonstrated that ST inhibited lipopolysaccaride (LPS)-induced tumor necrosis factor (TNF)-α and interleukin (IL)-6 production. The maximal inhibition rate of TNF-α and IL-6 production by ST (2 mg/ml) was 48.01 ± 2.8% and 56.45 ± 2.8%, respectively. During the inflammatory process, cyclooxygenase (COX)-2 and inducible nitric oxide synthase (iNOS) were increased in mouse peritoneal macrophages. However, treated with ST decreased the protein level of COX-2 and iNOS, as well as the production of PGE2 and NO in LPS-stimulated mouse peritoneal macrophages. In addition, ST inhibited the phosphorylation of MAPK. Taken together, the results of this study suggest an important molecular mechanism by which ST reduces inflammation, which may explain its beneficial effect in the regulation of inflammatory reactions.
Resveratrol is a polyphenol compound and prominent anti-inflammatory agent found in plants, including the fruits of Morus alba. However, the therapeutic mechanisms of resveratrol remain largely unclear. To gain insight into the biological effects of resveratrol, we examined its influence on LPS-induced IL-8 production in the human monocytic cell line, THP-1. In inflammatory diseases, IL-8 plays a central role in the initiation and maintenance of inflammatory response. In the present study, IL-8 production was measured by ELISA and RT-PCR, while MAPK activation, IκBα degradation, nuclear factor (NF)-κB activation and cyclooxygenase (COX)-2 expression were determined by Western blot analysis. Resveratrol inhibited LPS-induced IL-8 production in a dose-dependent manner. Furthermore, resveratrol inhibited extracellular signal-regulated kinase (ERK) and p38 MAPK phosphorylation, IκBα degradation, NF-κB activation and cyclooxygenase (COX)-2 expression, which suggest that resveratrol inhibits IL-8 secretion by blocking MAPK phosphorylation and NF-κB activation. Taken together, these findings may help elucidate the mechanism by which resveratrol modulates THP-1 cell activation under inflammatory conditions.
Solanum nigrum L., commonly known as black nightshade, is used worldwide for the treatment of skin and mucosal ulcers, liver cirrhosis and edema. We aimed to determine the anti-inflammatory active fraction of S. nigrum by serial extractions. S. nigrum was first extracted with methanol, then fractionated with chloroform and water. The effects of S. nigrum fractions, diosgenin and α-solanine on LPS/interferon-gamma-induced nitric oxide (NO) and inducible NO synthase (iNOS), or LPS-induced tumor necrosis factor-α (TNF-α) and interleukin (IL)-6, in mouse peritoneal macrophages were determined. Western blotting analysis was used to detect LPS-induced phosphorylation of p38, JNK and ERK1/2. The chloroform fraction of S. nigrum was cytotoxic in a time and concentration dependent manner; however, the methanol and water fractions were not. The chloroform fraction reduced NO through inhibition of iNOS synthesis and inhibited TNF-α and IL-6 at the level of protein secretion; the methanol and water fractions showed a weak or no effect. The chloroform fraction also suppressed p38, JNK and ERK1/2. Diosgenin and α-solanine were cytotoxic at a high concentration. In particular, diosgenin was able to inhibit TNF-α and IL-6, but both compounds did not affect LPS-induced iNOS expression. These results indicate that the anti-inflammatory compounds of S. nigrum exist preferentially in the nonpolar fraction, ruling out the possibility that diosgenin and α-solanine are the likely candidates. The inhibition of iNOS, TNF-α and IL-6 by the chloroform fraction may be partly due to the suppression of p38, JNK and ERK1/2. Further study is required to identify the active compounds of S. nigrum.
Mesangial cell proliferation is correlated with the progression of renal failure. The purpose of this study was to determine whether a water extract of Poria cocos Wolf (WPC), a well-known medicinal plant, regulates rat mesangial cell proliferation in the presence of high glucose (HG). HG significantly accelerated [3H]-thymidine incorporation, which was inhibited by WPC (1–50 μg/mL) in a dose-dependent manner. Cell migration and fibronectin mRNA expression data also supported the anti-proliferative effect of WPC. Western blot analysis revealed that pretreatment with WPC decreased the expression of cyclins and cyclin-dependent kinases (CDKs) and promoted the expression of p21waf1/cip1 and p27kip1. WPC also suppressed HG-induced p38 mitogen-activated protein kinase (p38 MAPK) and extracellular-signal-regulated kinase 1/2 (ERK 1/2) phosphorylation. Furthermore, WPC inhibited HG-induced production of dichlorofluorescein (DCF)-sensitive intracellular reactive oxygen species (ROS). In conclusion, HG promoted mesangial cell proliferation, and WPC inhibited this activity, at least in part, via induction of cell cycle arrest and activation of anti-oxidant properties. Taken together, these results suggest that P. cocos may be a potent regulator of HG-induced proliferation.
Sargassum fulvellum (Turner) C. Agardh has been used to treat various inflammatory diseases, including lump, dropsy, swollen and painful scrotum, and urination problems for several centuries with no side effects. This study aims to investigate the anti-inflammatory effect of the hexane fraction of S. fulvellum (HFS) in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells and phorbol 12-myristate 13-acetate (PMA)-induced mouse-ear edema. The anti-inflammatory activity of HFS in LPS-stimulated RAW 264.7 cells was investigated by assessing the inhibition of nitric oxide (NO) and pro-inflammatory cytokine production during Griess reaction and enzyme-linked immunosorbent assay (ELISA), respectively. The molecular mechanisms that underlie the anti-inflammatory action of HFS were investigated by analyzing the activation of transcription factor and its upstream signaling proteins. Additionally, an in vivo study of the anti-inflammatory effect of HFS was carried out using PMA-induced mouse-ear edema. HFS inhibited LPS-induced NO production in a dose-dependent manner and suppressed the expression of inducible NO synthase (iNOS) in the RAW 264.7 cells. Further, HFS reduced the production of pro-inflammatory cytokines in the LPS-stimulated RAW 264.7 cells. HFS significantly inhibited LPS-induced nuclear factor kappa B (NF-κB) transcriptional activity and NF-κB translocation into the nucleus by preventing degradation of inhibitor κB-α. Moreover, HFS inhibited the activation of Akt and mitogen-activated protein kinases (MAPKs) in the LPS-stimulated RAW 264.7 cells. Furthermore, HFS suppressed PMA-induced mouse-ear edema. The above data indicate that the anti-inflammatory effects of HFS on LPS-stimulated cells are associated with the suppression of NF-κB through the inhibition of MAPKs and Akt phosphorylation.
This study was conducted to demonstrate myocardial protective effects and possible underlying mechanisms of vitexin on myocardial ischemia/reperfusion (I/R) injury in rats. Occluding the anterior descending artery for 30 min and restoring blood perfusion for 60 min in rat established a model of myocardial I/R. The elevation of the ST segment of Electrocardiograph (ECG) was observed. The infarct size of the rat heart was assessed by triphenyltetrazolium chloride staining (TTC). LDH, CK, SOD activities and MDA content were determined. An immunohistochemical analysis was applied to measure the expression of myocardial NF-κBp65 and TNF-α. ERK/phospho-ERKand c-Jun/phospho-c-Jun protein expression was examined via Western Blot. Vitexin significantly reduced the elevation of the ST segment of ECG and myocardial infarct size. LDH and CK activities and MDA content were attenuated in serum, while SOD activity was markedly enhanced. Vitexin significantly attenuated I/R-induced increases of myocardial NF-κB and TNF-α. Moreover, Western Blot analysis presented that vitexin markedly enhanced the expression of phospho-ERK and weakened the expression of phospho-c-Jun compared to I/R group. The significant protective effect against myocardial ischemical/reperfusion injury in rat, which is exhibited by vitexin, may be related to its antioxidative and anti-inflammatory effects by regulating inflammatory cytokines and the MAPK pathway.
Scutellariae radix is one of the most widely used anticancer herbal medicines in several Asian countries, including Korea, Japan, and China. Squamous cell carcinoma (SCC) is one of the most common head and neck carcinomas, which is highly invasive and metastatic, and can potentially develop chemoresistance. Therefore, new effective treatment methods are urgently needed. We determined the effects of Scutellariae radix on SCC-25 cells using the WST-1 assay, F-actin staining, flow cytometry analysis, immunofluorescence staining, and western blot analysis. Scutellariae radix treatment inhibited SCC-25 cell growth in a dose- and time-dependent manner, but it did not inhibit HaCaT (human keratinocyte) cell growth. Changes in cell morphology and disruption of filamentous (F)-actin organization were observed. Scutellariae radix-induced apoptosis as indicated by the translocation of cytochrome c and apoptosis-inducing factor (AIF) into the nucleus and cytosol. Scutellariae radix-induced an increase in cells with sub-G1 DNA content, and increased Bax, cleaved caspase-3, caspase-7, caspase-9, DNA fragmentation factor 45 (DFF 45), and poly(ADP-ribose) polymerase-1 (PARP-1) expression levels. Furthermore, increased expression of phosphorylated mitogen-activated protein kinase (MAPK)-related proteins was detected. The antitumor effect of Scutellariae radix was due to decreased cell proliferation, changes in cell morphology, and the activation of caspase and MAPK pathways. Taken together, the findings of this study highlight the anticancer activity of Scutellariae radix in chemoresistant SCC-25 oral squamous carcinoma cells.
Traditionally, Phyllanthus acidus (Phyllanthaceae) has been used for the treatment of rheumatism, bronchitis, asthma, respiratory disorders, and hepatitis. Recently, we showed that a methanol extract of Phyllanthaceae (Pa-ME) has a potent anti-inflammatory activity in RAW264.7 cells and strongly ameliorates HCl/EtOH-induced gastric ulcers in mice by targeting the Src/Syk of NF-κB. In the present study, we explored the molecular mechanism of Pa-ME on the AP-1 activation pathway and evaluated its potential hepatoprotective effects. To do this, we employed lipopolysaccharide (LPS)-stimulated RAW264.7 cells and U937 cells and an LPS/D-galactosamine (D-GaIN)-induced acute hepatitis mouse model. We utilized a multitude of assays, including immunoblotting analysis, reporter gene assays, and mRNA expression analysis, to determine the effect of Pa-ME on the AP-1 pathway. Pa-ME strikingly suppressed the production of LPS-induced pro-inflammatory cytokines including interleukin (IL)-1β, IL-6, and tumor necrosis factor-α (TNF-α). Furthermore, Pa-ME also strongly inhibited activator protein-1 (AP-1) activation and mitogen-activated protein kinase (MAPK) phosphorylation in LPS-stimulated RAW264.7 macrophages cells and the U937 monocyte like human cell line. Moreover, pre-treatment with Pa-ME exhibited strong hepatoprotective and curative effects in an LPS/D-Gal-induced mouse hepatitis model as evidenced by a decrease in elevated serum AST and ALT levels and the amelioration of histological damage. Taken together, our data suggest that Pa-ME might play a crucial ethnopharmacological role as a hepatoprotective herbal remedy by suppressing MAPK signaling and the activity of the downstream transcription factor AP-1.
A complicated interplay between resident mast cells and other recruited inflammatory cells contributes to the development and progression of allergic inflammation entailing the promotion of T helper 2 (Th2) cytokine responses. The current study examined whether resveratrol suppressed the production of inflammatory Th2 cytokines in cultured rat basophilic leukemia RBL-2H3 cells. Cells pre-treated with resveratrol nontoxic at 1–25μM were sensitized with anti-dinitrophenyl (anti-DNP), and subsequently stimulated by dinitrophenyl–human serum albumin (DNP–HSA) antigen. Resveratrol dose-dependently diminished the secretion of interleukin (IL)-3, IL-4, IL-13 as well as tumor necrosis factor (TNF)-α by the antigen stimulation from sensitized cells. It was found that resveratrol mitigated the phosphorylation of p38 MAPK, ERK, and JNK elevated in mast cells exposed to Fc epsilon receptor I (FcεRI)-mediated immunoglobulin E (IgE)-antigen complex. The FcεRI aggregation was highly enhanced on the surface of mast cells following the HSA stimulation, which was retarded by treatment with 1–25μM resveratrol. The IgE-receptor engagement rapidly induced tyrosine phosphorylation of c-Src-related focal adhesion protein paxillin involved in the cytoskeleton rearrangement. The FcεRI-mediated rapid activation of c-Src and paxillin was attenuated in a dose-dependent manner. In addition, the paxillin activation entailed p38 MAPK and ERK-responsive signaling, but the JNK activation was less involved. Consistently, oral administration of resveratrol reduced the tissue level of phosphorylated paxillin in the dorsal skin of DNP–HSA-challenged mice. The other tyrosine kinase Tyk2-STAT1 signaling was activated in the dorsal epidermis of antigen-exposed mice, which was associated with allergic inflammation. These results showed that resveratrol inhibited Th2 cytokines- and paxillin-linked allergic responses dependent upon MAPK signaling. Therefore, resveratrol may possess the therapeutic potential of targeting mast cells in preventing the development of allergic inflammation.
Xanthium strumarium L. (Asteraceae), a traditional Chinese medicine, is prescribed to treat arthritis, bronchitis, and rhinitis. Although the plant has been used for many years, the mechanism by which it ameliorates various inflammatory diseases is not yet fully understood. To explore the anti-inflammatory mechanism of methanol extracts of X. strumarium (Xs-ME) and its therapeutic potential, we used lipopolysaccharide (LPS)-stimulated murine macrophage-like RAW264.7 cells and human monocyte-like U937 cells as well as a LPS/D-galactosamine (GalN)-induced acute hepatitis mouse model. To find the target inflammatory pathway, we used holistic immunoblotting analysis, reporter gene assays, and mRNA analysis. Xs-ME significantly suppressed the up-regulation of both the activator protein (AP)-1-mediated luciferase activity and the production of LPS-induced proinflammatory cytokines, including interleukin (IL)-1β, IL-6, and tumor necrosis factor (TNF)-α. Moreover, Xs-ME strongly inhibited the phosphorylation of mitogen-activated protein kinase (MAPK) in LPS-stimulated RAW264.7 and U937 cells. Additionally, these results highlighted the hepatoprotective and curative effects of Xs-ME in a mouse model of LPS/D-GalN-induced acute liver injury, as assessed by elevated serum levels of aspartate aminotransferase (AST) and alanine aminotransferase (ALT), and histological damage. Therefore, our results strongly suggest that the ethnopharmacological roles of Xs-ME in hepatitis and other inflammatory diseases might result from its inhibitory activities on the inflammatory signaling of MAPK and AP-1.
In the present study, the anti-inflammatory and antisepticemic activities of a water extract of Liriope platyphylla (LP) were investigated. We first estimated the scavenging activity of DPPH and the hydroxyl radical and total phenolic contents of LP. Results indicated that LP, a rich source of phenolic compounds, showed a remarkable radical scavenging capacity. A MTT assay showed that LP treatment did not affect the toxicity against the RAW 264.7 macrophage cells, up to the concentration of 500μg/mL. Treatment of LP significantly attenuated the production of inflammatory mediators, such as nitric oxide (NO), interleukin-6 (IL-6), tumor-necrosis factor (TNF)-α and prostaglandin (PG)E2 in lipopolysaccharide (LPS)-stimulated RAW 264.7 macrophages cells. Moreover, LP contributed to the down-regulation of inducible NO synthase (iNOS) and TNF-α mRNA expression, as well as cyclooxygenase-2 (COX-2) protein expression. A western blotting assay further showed that LP inhibited activation of mitogen-activated protein kinase (MAPK) and nuclear factor (NF)-κB. In an animal experiment using an LPS-induced septicemia model in C57BL/6 mice, oral administration of LP (40mg/kg body weight) markedly reduced the level of TNF-α and IL-6 in serum and protected against LPS-induced lethal shock in mice. Taken together, the results of treatments of LP on inhibited LPS-induced inflammatory responses in both in vitro and in vivo models and indicate it may be a promising neutraceutical or medicinal agent to prevent or cure inflammation-related disease.
Scutellaria baicalensis has been widely used as both a dietary ingredient and traditional herbal medicine in Taiwan to treat inflammation, cancer, and bacterial and viral infections of the respiratory tract and gastrointestinal tract. This paper aims to investigate the in vitro and in vivo anti-inflammatory effects of S. baicalensis. In HPLC analysis, the fingerprint chromatogram of the water extract of S. baicalensis (WSB) was established. The anti-inflammatory effects of WSB were inverstigated using lipopolysaccharide (LPS)-stimulated mouse macrophage (RAW264.7) in vitro and LPS-induced lung injury in vivo. WSB attenuated the production of LPS-induced nitric oxide (NO), tumor necrosis factor-alpha (TNF-α), interleukin-1β (IL-1β)𝔰, and IL-6 in vitro and in vivo. Pretreatment with WSB markedly reduced the LPS-induced histological alterations in lung tissues. Furthermore, WSB significantly reduced the number of total cells and the protein concentration levels in the BALF. WSB blocked protein expression of inducible NO synthase (iNOS), cyclooxygenase-2 (COX-2), phosphorylation of IκB-α protein and MAPKs in LPS-stimulated RAW 264.7 cells and LPS-induce lung injury was also blocked. This study suggests that WSB possesses anti-inflammatory effects in vitro and in vivo, and the results suggested that WSB may be a potential therapeutic candidate for the treatment of inflammatory diseases.
Although Astragalus polysaccharide (APS) has been shown to have various pharmacological effects, there have been no studies concerning the inhibitory effects of APS on the radiation-induced bystander effects (RIBE). The aim of this study was to investigate whether APS could suppress RIBE damage by inhibiting cell growth, micronucleus (MN) formation and 53BP1 foci number increased in bone marrow mesenchymal stem cells (BMSCs), named bystander cells, as well as to explore its mechanism. In this study, APS decreased proliferation and colony rate of bystander cells by inducing cell cycle arrest at G1 phase via extrinsic and intrinsic DNA damage. Regarding mechanism, APS inhibited mitogen-activated protein kinase (MAPK) signal pathway by down-regulating the expression of the key proteins, phosphorylated JNK (p-JNK), phosphorylated ERK (p-ERK) but not phosphorylated P38 (p-P38), and down-regulating their downstream function protein and molecule, cyclooxygenase-2 (COX-2) and reactive oxygen species (ROS). Moreover, in bystander cells, APS inhibits expression of transforming growth factor β receptor II (TGF-βR II), a cell membrane receptor, resulting in lower ROS production and secretion via TGF-βR-JNK/ERK-COX-2/ROS not P38 signaling. They gave a hint that the decreased RIBE damage induced by APS treatment involved TGF-βR-JNK/ERK-COX-2/ROS down-regulation.
Adenostemma lavenia is a perennial herb belonging to the Compositae family and is widely distributed in the tropical parts of Asia. It has been widely used as medicine in Taiwan with the whole plant used to treat pulmonary congestion, pneumonia, bacterial infections of the respiratory tract, edema, and inflammation. This study sought to investigate the anti-inflammatory effects of A. lavenia in vitro and in animal models. The anti-inflammatory effects of ethyl acetate fractions of A. lavenia (EAAL) were stimulated with lipopolysaccharide (LPS) murine macrophages (RAW 264.7) and lung injury in mice. EAAL reduced proinflammatory cytokine responses. Preoral EAAL alleviated LPS-induced histological alterations in lung tissue and inhibited the infiltration of inflammatory cells and protein concentrations in bronchoalveolar lavage fluid (BALF). EAAL prevented protein expression of inducible NO synthase (iNOS) and cyclooxygenase-2 (COX-2); phosphorylation of IκB-α, MAPKs, and AMP-activated protein kinase (AMPK); and activated anti-oxidant enzymes (catalase, SOD, and GPx), heme oxygenase-1 (HO-1), and nuclear factor E2-related factor 2 (Nrf2) in LPS-stimulated cells and lung tissues. Fingerprinting of EAAL was performed with HPLC to control its quality, and p-coumaric acid was found to be a major constituent. This study suggests that EAAL is a potential therapeutic agent to treat inflammatory disorders.
Acute liver injury (ALI) induced by acetaminophen (APAP) is the main cause of drug-induced liver injury. Previous reports indicated liver failure could be alleviated by saponins (ginsenosides) from Panax ginseng against APAP-induced inflammatory responses in vivo. However, validation towards ginsenoside Rb1 as a major and marker saponin may protect liver from APAP-induced ALI and its mechanisms are poorly elucidated. In this study, the protective effects and the latent mechanisms of Rb1 action against APAP-induced hepatotoxicity were investigated. Rb1 was administered orally with 10mg/kg and 20mg/kg daily for 1 week before a single injection of APAP (250mg/kg, i.p.) 1h after the last treatment of Rb1. Serum alanine/aspartate aminotransferases (ALT/AST), liver glutathione (GSH) depletion, as well as the inflammatory cytokines, such as tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β), inducible nitric oxide synthase (iNOS), and cyclooxygenase-2 (COX-2), were analyzed to indicate the underlying protective effects of Rb1 against APAP-induced hepatotoxicity with significant inflammatory responses. Histological examination further proved Rb1’s protective effects. Importantly, Rb1 mitigated the changes in the phosphorylation of MAPK and PI3K/Akt, as well as its downstream factor NF-κB. In conclusion, experimental data clearly demonstrated that Rb1 exhibited a remarkable liver protective effect against APAP-induced ALI, partly through regulating MAPK and PI3K/Akt signaling pathways-mediated inflammatory responses.
Panax notoginseng saponins (PNS) are the main active ingredients of Panax notoginseng (Burk) F. H. Chen, which are used as traditional Chinese medicine for thousands of years and have various clinical effects, including anti-inflammation, anti-oxidation, and cardiovascular protection. Inflammatory bowel disease (IBD) is a complex gastrointestinal inflammatory disease that cannot be cured completely nowadays. The anti-inflammatory and protective effects of PNS were analyzed in vitro and in dextran sulfate sodium (DSS)-induced colitis mouse model. PNS inhibited the release of nitric oxide (NO), tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), and monocyte chemoattractant protein-1 (MCP-1) in Pam3CSK4-induced RAW 264.7 macrophages. In the animal study, compared with DSS-induced mice, PNS reduced the expression of pro-inflammatory cytokines (TNF-α, IL-6, and MCP-1) in the colon tissues. Furthermore, PNS treatment led to a remarkable reduction in the activation of the inhibitor of nuclear factor kappa-B kinase α/β (IKKα/β), IκBα and p65 induced by DSS. On the other hand, PNS inhibited the phosphorylation of c-Jun N-terminal kinase (JNK), p38, and extracellular regulated protein kinase 1/2 (ERK1/2). Taken together, our results suggested that PNS conferred profound protection for colitis mice through the downregulation of mitogen-activated protein kinase (MAPK) and NF-κB signaling pathways, which were associated with reducing inflammatory responses, alleviating tissue damage, and maintaining of intestinal integrity and functionality.
Activation of the hepatic stellate cell is implicated in pathological vascularization during development of liver fibrosis. MAPK signaling is involved in the activation of hepatic stellate cell. Oxidative stress and inflammation are also involved in the pathogenesis of liver fibrosis. Notoginsenoside R1 is an effective saponin isolated from the roots of Panax notoginseng (Burk) F. H. Chen and exerts anti-oxidant, anti-inflammatory and anti-fibrotic roles in various diseases. However, the role of Notoginsenoside R1 in liver fibrosis has not been investigated yet. First, a rat model with liver fibrosis was established through oral gavage administration with carbon tetrachloride. Data from hematoxylin and eosin (H&E) and Masson’s trichrome stainings showed that carbon tetrachloride induced severe hepatic damages, including inflammatory cell infiltration, lipid droplets deposition in hepatocytes and liver centrilobular necrosis. Meanwhile, the rats were also intraperitoneal injected with different concentrations of Notoginsenoside R1. Results demonstrated that Notoginsenoside R1 treatment suppressed the pathological changes in the livers with enhanced levels of ALB and TP, and reduced levels of ALP, AST and ALT. Second, Notoginsenoside R1 also significantly attenuated carbon tetrachloride-induced decrease in PPAR-γ and increase in Coll-a1, α-SMA and TIMP1 in liver tissues (p< 0.001). Third, the decrease in GSH, SOD and GST and increase in MDA, IL-1β, IL-6 and TNF-α induced by carbon tetrachloride were markedly restored by Notoginsenoside R1 (p< 0.001). Lastly, Notoginsenoside R1 counteracted with the promotive effects of carbon tetrachloride on levels of proteins involved in MAPK signaling, including phosphorylated p65 (p-p65), p-ERK, p-JNK and p-p38. In conclusion, Notoginsenoside R1 suppressed the activation of hepatic stellate cells and exerted anti- oxidant and anti-inflammatory to attenuate carbon tetrachloride-induced liver fibrosis through inactivation of NF-κB and MAPK signaling.
Cisplatin (DDP)-based chemotherapy is the first-line regimen for advanced non-small cell lung cancer (NSCLC) patients. However, advanced NSCLC patients may have innate resistance to DDP or develop resistance during DDP treatment. We investigated a natural compound, arteannuin B (Art B), for its potential effects on DDP resistance in NSCLC. Art B was isolated from Artemisia annua by chromatographic purification and spectral elucidation. The activities of Art B on DDP-mediated effects were examined using in vitro and in vivo assays. We observed significant correlations in T stage, clinical stage, chemotherapy resistance and poor survival of NSCLC patients with low Cx43 expression. Art B enhanced the effectiveness of cisplatin by increasing Cx43 expression in normal and DDP-resistant NSCLC cells. Art B also increased DDP uptake through up-regulating Cx43. The combination of DDP and Art B showed better therapeutic effect than individual treatments both in vitro and in vivo. Art B increased intracellular Fe2+ level, promoted calcium influx, and activated gap junction and MAPK pathways, which might contribute to Art B-mediated effects. Art B may serve as a new drug candidate to enhance the antitumor effect of DDP on NSCLC.
The identification of cis-elements (motifs) in the regulatory regions of higher eukaryotes is an important and challenging problem in computational biology. Eukaryotic transcriptional regulatory mechanisms pose several difficulties for promoter analysis: including a high variance in the motif locations, frequently large divergence from motif consensus patterns, and a large amount of repetitive elements (confusing to many motif finding procedures). One promising approach to this difficult problem involves cross-species comparison. In this work we analyzed the full-length regulatory regions of genes involved in the G-protein coupling MAP kinase pathway and compared the results with ribosomal genes using human, mouse and rat genomic data. We found 19 high likely transcription factors (TFs) candidates for MAPK and 12 TFs for the ribosomal dataset. In the case of the MAPK dataset, regulatory regions of genes functionally grouped as receptors and MAP-core genes were found mostly highly conserved across the three species.