World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Astragalus saponins Inhibits Lipopolysaccharide-Induced Inflammation in Mouse Macrophages

    https://doi.org/10.1142/S0192415X16500324Cited by:28 (Source: Crossref)

    Excessive nitric oxide (NO) and pro-inflammatory cytokines are produced during the pathogenesis of inflammatory diseases and cancer. It has been demonstrated that anti-inflammation contributes Astragalus membranaceus saponins (AST)’s beneficial effects in combination of conventional anticancer drugs. However, the immunomodulating property of AST has not been well characterized. In this study, we found that AST suppressed lipopolysaccharide (LPS)-induced generation of NO without causing cytotoxicity in the mouse macrophage RAW264.7. The gene and protein overexpression of inducible NO synthase (iNOS) as well as the production of tumor necrosis factor-αα, evoked by LPS, was consistently down-regulated by AST. AST also inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and suppressed nuclear factor (NF)-κκB activation and the associated IκκBαα degradation during LPS insult. Furthermore, AST induced growth inhibition in promyelocytic leukemic HL-60 cells and T-lymphocyte leukemic Jurkat cells, but exerted no cytotoxic effects in normal human peripheral blood mononuclear cells (PBMC). It is known that the chemotherapeutic drug 5-FU can suppress the immune system, which can be identified by a reduced white blood cell count and decreased hematocrit, while the combination of AST and 5-FU can reverse the above hematologic toxicities. To summarize, non-cytotoxic concentrations of AST suppress LPS-induced inflammatory responses via the modulation of p38 MAPK signaling and the inhibition of NO and cytokine release. Importantly, AST can alleviate the hematologic side effects of current chemotherapeutic agents. These findings can facilitate the establishment of AST in the treatment of inflammatory diseases and inflammation-mediated tumor development.