Please login to be able to save your searches and receive alerts for new content matching your search criteria.
Pulmonary inflammation is a characteristic of many lung diseases. Increased levels of inducible nitric oxide synthase (iNOS), cyclooxygenase-2 (COX-2), and proinflammatory cytokines, such as interleukin-1β (IL-1β), tumor necrosis factor-α (TNF-α) and IL-8, have been correlated with lung inflammation. In this study, we used lipopolysaccharide (LPS) to induce iNOS, COX-2, and cytokines (TNF-α, IL-1β, and IL-8) productions in human lung epithelial cells (A-549). Leaf of Eriobotrya japonica (Pi-Pa-Ye, PPY), a traditional Chinese medicine for the treatment of pulmonary inflammatory diseases, was capable of suppressing LPS-induced cytokine productions in a dose-dependent manner. Moreover, the suppression of PPY on the cytokine productions resulted from the inhibition of inhibitory κB-α phosphorylation and nuclear factor-κB (NF-κB) activation. Analysis of the anti-inflammatory effects of ursolic acid and oleanolic acid, the triterpene compounds present in PPY, showed that ursolic acid significantly inhibited LPS-induced IL-8 production, NF-κB activation, and iNOS mRNA expression, whereas oleanolic acid did not have these effects. In conclusion, our findings suggested the potential mechanisms of PPY and its active component, ursolic acid, in the treatment of pulmonary inflammation.
Both Angelica sinensis (Oliv.) Diels (AS) and Ligusticum chuanxiong Hort. (LC) have been used to treat stroke in traditional Chinese medicine for centuries. Ferulic acid (FA), a component in both AS and LC, plays a role in neuroprotection. The purpose of this study was to investigate the effects of FA on cerebral infarct and the involvement of neuroprotective pathway. Rats underwent 2 hours and 24 hours of reperfusion after 90 min middle cerebral artery occlusion (MCAo). The cerebral infarct and neurological deficits were measured after 24 hours of reperfusion. Furthermore, the expression of superoxide radicals, intercellular adhesion molecule-1 (ICAM-1), myeloperoxidase (MPO), nuclear factor-κB (NF-κB) immunoreactive cells were assessed after 2 hours and 24 hours of reperfusion. Administration of 80 and 100 mg/kg of FA at the beginning of MCAo significantly reduced cerebral infarct and neurological deficit-score, similar results were obtained by 100 mg/kg of FA administered 30 min after MCAo. FA treatment (100 mg/kg i.v.) effectively suppressed superoxide radicals in the parenchyma lesion, and ICAM-1 immunoreactive vessels in the ischemic striatum after 2 hours of reperfusion. FA (100 mg/kg i.v.) reduced the expression of ICAM-1 and NF-κB in the ischemic cortex and striatum, also down-regulated MPO immunoreactive cells in the ischemic cortex after 24 hours of reperfusion. These results showed that the effect of FA on reducing cerebral infarct area and neurological deficit-score were at least partially attributed to the inhibition of superoxide radicals, ICAM-1 and NF-κB expression in transient MCAo rats.
Our previous studies have shown that Uncaria rhynchophylla (UR) can reduce epileptic seizures. We hypothesized that UR and its major component rhynchophylline (RH), reduce epileptic seizures in rats treated with kainic acid (KA) by inhibiting nuclear factor-κB (NF-κB) and activator-protein-1 (AP-1) activity, and by eliminating superoxide anions. Therefore, the level of superoxide anions and the DNA binding activities of NF-κB and AP-1 were measured. Sprague-Dawley (SD) rats were pre-treated with UR (1.0 g/kg, i.p.), RH (0.25 mg/kg, i.p.), or valproic acid (VA, 250 mg/kg, i.p.) for 3 days and then KA was administered intra-peritoneal (i.p.). The results indicated that UR, RH, and VA can reduce epileptic seizures and the level of superoxide anions in the blood. Furthermore, KA was demonstrated to induce the DNA binding activities of NF-κB and AP-1. However, these inductions were inhibited by pre-treatment with UR, RH, or VA for 3 days. Moreover, UR and RH were shown to be involved in the suppression of c-Jun N-terminal kinase (JNK) phosphorylation. This study suggested that UR and RH have antiepileptic effects in KA-induced seizures and are associated with the regulation of the innate immune system via a reduction in the level of superoxide anions, JNK phosphorylation, and NF-κB activation.
Hydrogen peroxide (H2O2) has been shown to promote neurodegeneration by inducing the activation of nuclear factor-κB (NF-κB). In this study, NF-κB activation was induced by H2O2 in human neuroblastoma SH-SY5Y cells. Whether paeonol, one of the phenolic phytochemicals isolated from the Chinese herb Paeonia suffruticosa Andrews (MC), would attenuate the H2O2-induced NF-κB activity was investigated. Western blot results showed that paeonol inhibited the phosphorylation of IκB and the translocation of NF-κB into the nucleus. The ability of paeonol to reduce DNA binding ability and suppress the H2O2-induced NF-κB activation was confirmed by an electrophoretic mobility shift assay and a luciferase reporter assay. Using a microarray combined with gene set analysis, we found that the suppression of NF-κB was associated with mature T cell up-regulated genes, the c-jun N-terminal kinase pathway, and two hypoxia-related gene sets, including the hypoxia up-regulated gene set and hypoxia inducible factor 1 targets. Moreover, using network analysis to investigate genes that were altered by H2O2 and reversely regulated by paeonol, we found that NF-κB was the primary center of the network and amyloid precursor protein (APP) was the secondary center. Western blotting showed that paeonol inhibited APP at the protein level. In conclusion, our work suggests that paeonol down-regulates H2O2-induced NF-κB activity, as well as NF-κB-associated APP expression. Furthermore, the gene expression profile accompanying the suppression of NF-κB by paeonol was identified. The new gene set that can be targeted by paeonol provided a potential use for this drug and a possible pharmacological mechanism for other phenolic compounds that protect against oxidative-related injury.
Atractylodes macrocephala polysaccharide (AMP), a traditional Chinese medicine, is thought to have protective effects against liver injury. Therefore, this study was designed to explore the effects of AMP on hepatic ischemia–reperfusion injury (IRI) and elucidate the possible mechanisms. Ninety-six Sprague-Dawley rats were randomly divided into four groups with 24 rats per group: a normal control group, an IRI group, an AMP-treated group (0.4 g/kg/d) and a bifendate-treated group (100 mg/kg). Rats were treated with AMP or bifendate once daily for seven days by gastric gavage. The normal control group and the IRI model group received an equivalent volume of physiological saline. At 1, 6 and 24 h after surgery, the rats were killed and liver tissue samples were obtained to determine interleukin-1 (IL-1) expression by Western blotting and nuclear factor-κB (NF-κB) expression by immunohistochemistry. Liver morphology was assessed by microscopy and transmission electron microscopy. Blood samples were obtained to measure liver function (alanine aminotransferase, aspartate aminotransferase, total bilirubin and direct bilirubin). AMP significantly reduced the elevated expression of markers of liver dysfunction and the hepatic morphologic changes induced by hepatic IRI in rats. AMP also markedly inhibited IRI-induced lipid peroxidation and altered the activities of the antioxidant enzyme superoxide dismutase and malondialdehyde levels. Moreover, pretreatment with AMP suppressed the expression of interleukin-1β and NF-kB in IRI-treated rats. These results suggest that AMP exerts protective and therapeutic effects against hepatic IRI in rats, which might be associated with its antioxidant properties and inhibition of NF-κB activation. More studies are needed to better understand the mechanisms underlying the protective effects of AMP on hepatic IRI.
Ulcerative colitis (UC) is an inflammatory bowel disease, which is a chronic gastrointestinal disorder. Oldenlandia diffusa (OD) has been used as a traditional oriental medicine for inflammation. However, the regulatory effect and molecular mechanism of OD in intestinal inflammation are not yet understood. This study investigated the protective effect of OD in dextran sulfate sodium (DSS)-induced colitis. Mice treated with DSS showed remarkable clinical signs, including weight loss, and reduced colon length. Administration of OD attenuated these signs and significantly suppressed levels of interleukin (IL)-6, IL-1β and expression of cyclooxygenase-2 in DSS-treated colon tissues. OD also reduced the activation of transcription nuclear factor-κB p65 in DSS-treated colon tissues. Hentriacontane, a constituent of OD, attenuated weight loss, colon shortening, and levels of IL-6 caused by DSS. Taken together, the results provide experimental evidence that OD might be a useful therapeutic medicine for patients with UC.
Citrus Unshiu peel (CUP) has been traditionally used in East Asia as a drug for the treatment of vomiting and dyspepsia. However, its effects on inflammation remain unknown. In this study, we investigated the effects of CUP on the production of pro-inflammatory mediators in lipopolysaccharide (LPS)-stimulated RAW 264.7 cells. The research focused on determining whether CUP could inhibit the expression of inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2 and the activation of nuclear factor (NF)-κB, mitogen-activated protein kinases (MAPKs), as well as the secretion of nitric oxide (NO), prostaglandin (PG) E2, tumor necrosis factor-α (TNF-α) and interleukin (IL)-6 in LPS-stimulated RAW 264.7 cells. We found that CUP represses LPS-induced iNOS and COX-2 gene expression as well as NO, PGE2, TNF-α and IL-6 production. Additionally, CUP inhibited the LPS-induced phosphorylation of extracellular signal-regulated kinase (ERK), p38, and c-Jun NH2-terminal kinase (JNK) MAPK, and suppressed IκBα degradation and nuclear translocation of NF-κB. Collectively, our results indicate that CUP inhibits the production of various inflammatory mediators via blockade of MAPK phosphorylation pursuant to the inhibition of IκBα degradation and the nuclear translocation of NF-κB. These findings are the first to clarify the mechanism underlying the anti-inflammatory effect exerted by CUP in RAW 264.7 macrophage cells stimulated by inflammatory agents.
Sipjeondaebotang (SJ) has been used as a traditional drug in east-Asian countries. In this study, to provide insight into the biological effects of SJ and SJ fermented by Lactobacillus, we investigated their effects on lipopolysaccharide (LPS)-mediated inflammation in macrophages. The investigation was focused on whether SJ and fermented SJ could inhibit the production of pro-inflammatory mediators such as prostaglandin (PG) E2 and nitric oxide (NO) as well as the expressions of cyclooxygenase (COX)-2, inducible nitric oxide synthase (iNOS), tumor necrosis factor (TNF)-α, mitogen-activated protein kinases (MAPKs) and nuclear factor (NF)-κB in LPS-stimulated RAW 264.7 cells. We found that SJ modestly inhibited LPS-induced PGE2, NO and TNF-α production as well as the expressions of COX-2 and iNOS. Interestingly, fermentation significantly increased its inhibitory effect on the expression of all pro-inflammatory mediators. Furthermore, fermented SJ exhibited increased inhibition of p38 MAPK and c-Jun NH2-terminal kinase (JNK) MAPK phosphorylation as well as NF-κB p65 translocation by reduced IκBα degradation compared with either untreated controls or unfermented SJ. High performance liquid chromatography (HPLC) analysis showed fermentation by Lactobacillus increases liquiritigenin and cinnamyl alcohol contained in SJ, which are known for their anti-inflammatory activities. Finally, SJ fermented by Lactobacillus exerted potent anti-inflammatory activity by inhibiting MAPK and NF-κB signaling in RAW 264.7 cells.
Allergic inflammatory diseases such as food allergy, asthma, sinusitis, and atopic dermatitis are increasing worldwide. In this study, we investigated the effects of aqueous extract of Mosla chinensis Max. (AMC) on mast cell-mediated allergic inflammation and studied the possible mechanism of this action. AMC inhibited compound 48/80-induced systemic and immunoglobulin E (IgE)-mediated local anaphylaxis. AMC reduced intracellular calcium levels and downstream histamine release from rat peritoneal mast cells activated by compound 48/80 or IgE. In addition, AMC decreased gene expression and secretion of proinflammatory cytokines such as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and IL-8 in human mast cells. The inhibitory effect of AMC on cytokine expression was nuclear factor (NF)-κB dependent. Our results indicate that AMC inhibits mast cell-mediated allergic inflammatory reaction by suppressing histamine release and expression of proinflammatory cytokines and the involvement of calcium and NF-κB in these effects. AMC might be a possible therapeutic candidate for allergic inflammatory disorders.
BiRyuChe-bang (BRC) is a Korean prescription medicine, which has been used to treat allergic rhinitis at Kyung Hee Medical Center. In this work, we investigated the effects of BRC on mast cell-mediated allergic reactions and inflammatory cytokines production, and identified the active component of BRC. Histamine release was measured from rat peritoneal mast cells (RPMCs). Ear swelling and passive cutaneous anaphylaxis (PCA) were examined in mouse models. Phorbol 12-myristate 13-acetate (PMA) plus A23187-induced inflammatory cytokines production was measured using enzyme-linked immunosorbent assay. Reverse transcriptase-polymerase chain reaction was used for the expressions of tumor necrosis factor (TNF)-α, interleukin (IL)-6, and IL-8. Activation of nuclear factor (NF)-κB was analyzed by Western blotting. BRC significantly inhibited the compound 48/80-induced ear swelling response, histamine release from RPMCs, PCA activated by anti-dinitrophenyl IgE, and PMA plus A23187-induced inflammatory cytokines production (p < 0.05). In addition, BRC dose-dependently inhibited the mRNA expressions of TNF-α, IL-6, and IL-8 as well as the activation of NF-κB in a human mast cell line, HMC-1 cells. BRC inhibited the levels of TNF-α and IL-6 in mice induced with PCA. Several components of BRC, such as 1,8-Cineole, Linalool, Linalyl acetate, α-Pinene, and α-Terpineol, significantly inhibited the release of histamine from RPMCs (p < 0.05). Among these components, Linalyl acetate was the most effective for inhibiting histamine release. These results indicate that BRC has a potential regulatory effect on allergic and inflammatory reactions mediated by mast cells.
Rosmarinic Acid (RA), a caffeic acid ester, has been shown to exert anti-inflammation, anti-oxidant and antiallergic effects. Our study aimed to investigate the effect of RA in sodium taurocholate (NaTC)-induced acute pancreatitis, both in vivo and in vitro. In vivo, RA (50 mg/kg) was administered intraperitoneally 2 h before sodium taurocholate injection. Rats were sacrificed 12 h, 24 h or 48 h after sodium taurocholate injection. Pretreatment with RA significantly ameliorated pancreas histopathological changes, decreased amylase and lipase activities in serum, lowered myeloperoxidase activity in the pancreas, reduced systematic and pancreatic interleukin-1 β (IL-1β), IL-6, and tumor necrosis factor-α (TNF-α) levels, and inhibited NF-κB translocation in pancreas. In vitro, pretreating the fresh rat pancreatic acinar cells with 80 μ mol/L RA 2 h before 3750 nmol/L sodium taurocholate or 10 ng/L TNF-α administration significantly attenuated the reduction of isolated pancreatic acinar cell viability and inhibited the nuclear activation and translocation of NF-κB. Based on our findings, RA appears to attenuate damage in sodium taurocholate-induced acute pancreatitis and reduce the release of inflammatory cytokines by inhibiting the activation of NF-κB. These findings might provide a basis for investigating the therapeutic role of RA in managing acute pancreatits.
Excessive nitric oxide (NO) and pro-inflammatory cytokines are produced during the pathogenesis of inflammatory diseases and cancer. It has been demonstrated that anti-inflammation contributes Astragalus membranaceus saponins (AST)’s beneficial effects in combination of conventional anticancer drugs. However, the immunomodulating property of AST has not been well characterized. In this study, we found that AST suppressed lipopolysaccharide (LPS)-induced generation of NO without causing cytotoxicity in the mouse macrophage RAW264.7. The gene and protein overexpression of inducible NO synthase (iNOS) as well as the production of tumor necrosis factor-α, evoked by LPS, was consistently down-regulated by AST. AST also inhibited the phosphorylation of p38 mitogen-activated protein kinase (MAPK) and suppressed nuclear factor (NF)-κB activation and the associated IκBα degradation during LPS insult. Furthermore, AST induced growth inhibition in promyelocytic leukemic HL-60 cells and T-lymphocyte leukemic Jurkat cells, but exerted no cytotoxic effects in normal human peripheral blood mononuclear cells (PBMC). It is known that the chemotherapeutic drug 5-FU can suppress the immune system, which can be identified by a reduced white blood cell count and decreased hematocrit, while the combination of AST and 5-FU can reverse the above hematologic toxicities. To summarize, non-cytotoxic concentrations of AST suppress LPS-induced inflammatory responses via the modulation of p38 MAPK signaling and the inhibition of NO and cytokine release. Importantly, AST can alleviate the hematologic side effects of current chemotherapeutic agents. These findings can facilitate the establishment of AST in the treatment of inflammatory diseases and inflammation-mediated tumor development.
Eclipta prostrata (EP) and its compounds are known to have several pharmacological effects including anti-inflammatory effects. In the present study, we demonstrated that EP improves the dextran sulfate sodium (DSS)-induced colitis symptoms such as body weight loss, colon length shortening and disease activity index. In DSS-induced colitis tissue, EP controls the protein expressions of cyclooxygenase-2 (COX-2) and hypoxia inducible factor-1α (HIF-1α). In addition, the release of prostaglandin E2 and vascular endothelial growth factor-A were significantly reduced by EP administration. EP also inhibited COX-2 and HIF-1α expressions in the tumor necrosis factor-α stimulated HT-29 cells. These inhibitory effects of EP occurred by reducing the phosphorylation of IκB and the translocation of the nuclear factor-κB (NF-κB). Additionally, we found through HPLC analysis that wedelolactone, which is an inhibitor of NF-κB transcription, was contained in water extract of EP. These results indicate that EP can improve colitis symptoms through the modulation of immune function in intestinal epithelial cells and suggests that EP has the potential therapeutic effect to intestinal inflammation.
The cytokine C-X-C motif chemokine ligand 8 (CXCL8) is produced in the tumor microenvironment and has an important role in cancer pathogenesis. CXCL8 activates the nuclear factor (NF)-κB signaling. However, the role of NF-κB inactivation in apoptosis induced by negative regulation of CXCL8 remains unclear. Here, we assessed the effects of MRGX on the transcriptional activity of NF-κB and the expression of tumor necrosis factor (TNF)-α-stimulated target genes in liver cancer cells. Furthermore, we found that modified regular ginseng extract (MRGX)-mediated inhibition of NF-κB signaling induced apoptosis. Importantly, MRGX exerted strong activity, inhibiting TNF-α-induced expression of Akt and NF-κB in a concentration-dependent manner. Furthermore, MRGX inhibited the TNF-α-induced expression of genes encoding CXCL8, CXCL1, inducible nitric oxide synthase and intercellular adhesion molecule 1. MRGX also dowregulated Akt activation, and there was a significant decrease in Akt activation in HepG2 cells treated with CXCL8 siRNA. Conversely, CXCL8 overexpression increased Akt activation in MRGX-treated HepG2 cells. When Akt was silenced, MRGX treatment of HepG2 cells overexpressing CXCL8 decreased nuclear translocation of NF-κB, whereas Akt overexpression increased nuclear translocation of NF-κB in MRGX-treated HepG2 cells. Moreover, MRGX negatively regulated the TNF-α-mediated IκB/NF-κB pathway to promote Bax activation, resulting in caspase-3 activation and apoptosis. Taken together, these results indicated that MRGX inhibited CXCL8-mediated Akt/NF-κB signaling, which upregulated Bax activation and consequently induced apoptosis in HepG2 cells.