World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Systems Pharmacology-Based Strategy to Explore the Pharmacological Mechanisms of Citrus Peel (Chenpi) for Treating Complicated Diseases

    https://doi.org/10.1142/S0192415X2150018XCited by:11 (Source: Crossref)

    Citri Reticulatae Pericarpium (CRP), also known as Chenpi in Chinese, is the dry mature peel of Citrus reticulata Blanco or its cultivated varieties. CRP as the health-care food and dietary supplement has been widely used in various diseases. However, the potential pharmacological mechanisms of CRP to predict and treat various diseases have not yet been fully elucidated. A systems pharmacology-based approach is developed by integrating absorption, distribution, metabolism, and excretion screening, multiple target fishing, network pharmacology, as well as pathway analysis to comprehensively dissect the potential mechanism of CRP for therapy of various diseases. The results showed that 39 bioactive components and 121 potential protein targets were identified from CRP. The 121 targets are closely related to various diseases of the cardiovascular system, respiratory system, gastrointestinal system, etc. These targets are further mapped to compound-target, target-disease, and target-pathway networks to clarify the therapeutic mechanism of CRP at the system level. The current study sheds light on a promising way for promoting the discovery of new botanical drugs.

    References

    • Barbato, E., F. Piscione, J. Bartunek, G. Galasso, P. Cirillo, G. De Luca, G. Iaccarino, B. De Bruyne, M. Chiariello and W. Wijns . Role of β2 adrenergic receptors in human atherosclerotic coronary arteries. Circulation 111: 288–294, 2005. Crossref, Medline, ISIGoogle Scholar
    • Bruno, N., G. Sinagra, S. Paolillo, A. Bonomi, U. Corra, M.F. Piepoli, F. Veglia, E. Salvioni, R. Lagioia and M. Metra . Mineralocorticoid receptor antagonists for heart failure: A real-life observational study. ESC Heart Failure 5: 267–274, 2018. Crossref, Medline, ISIGoogle Scholar
    • Chang, X., F. Luo, W. Jiang, L. Zhu, J. Gao, H. He, T. Wei, S. Gong and T. Yan . Protective activity of salidroside against ethanol-induced gastric ulcer via the MAPK/NF-κB pathway in vivo and in vitro. Int. Immunopharmacol. 28: 604–615, 2015. Crossref, Medline, ISIGoogle Scholar
    • Chen, C.Y. , TCM Database@Taiwan: The world’s largest traditional Chinese medicine database for drug screening in silico. PLoS One 6: e15939, 2011. Crossref, Medline, ISIGoogle Scholar
    • Chen, X., Z. Ji and Y.Z. Chen . TTD: Therapeutic target database. Nucl. Acids Res. 30: 412–415, 2002. Crossref, Medline, ISIGoogle Scholar
    • Cho, S., N. Kim, J.S. Kim, H.C. Jung and I.S. Song . The anti-cancer effect of COX-2 inhibitors on gastric cancer cells. Digest. Dis. Sci. 52: 1713–1721, 2007. Crossref, Medline, ISIGoogle Scholar
    • Davis, A.P., C.G. Murphy, R.J. Johnson, J.M. Lay, K. Lennonhopkins, C. Saracenirichards, D. Sciaky, B.L. King, M.C. Rosenstein and T.C. Wiegers . The comparative toxicogenomics database: Update 2013. Nucleic Acids Res. 41: 1104–1114, 2013. Crossref, Medline, ISIGoogle Scholar
    • Duan, L., L. Guo, L. Dou, C. Zhou, F. Xu, G. Zheng, P. Li and E. Liu . Discrimination of Citrus reticulata Blanco and Citrus reticulata ‘Chachi’ by gas chromatograph-mass spectrometry based metabolomics approach. Food Chem. 212: 123–127, 2016. Crossref, Medline, ISIGoogle Scholar
    • Feng, C.G., M.C. Kullberg, D. Jankovic, A.W. Cheever, P. Caspar, R.L. Coffman and A. Sher . Transgenic mice expressing human interleukin-10 in the antigen-presenting cell compartment show increased susceptibility to infection with Mycobacterium avium associated with decreased macrophage effector function and apoptosis. Infect. Immun. 70: 6672–6679, 2002. Crossref, Medline, ISIGoogle Scholar
    • Gorinstein, S., O. Martinbelloso, Y. Park, R. Haruenkit, A. Lojek, M. Ĉiž, A. Caspi, I. Libman and S. Trakhtenberg . Comparison of some biochemical characteristics of different citrus fruits. Food Chem. 74: 309–315, 2001. Crossref, ISIGoogle Scholar
    • Hao, D.C. and P.G. Xiao . Network Pharmacology: A rosetta stone for traditional Chinese medicine. Drug Develop. Res. 75: 299–312, 2014. Crossref, Medline, ISIGoogle Scholar
    • Hardy, D., B. Janowski, D. Corey and C. Mendelson . Progesterone receptor (PR) plays a major anti-inflammatory role in human myometrial cells by antagonism of NF-kB activation of cyclooxygenase 2 (COX-2) expression. Mol. Endocrinol. 20: 2724–2733, 2006. Crossref, MedlineGoogle Scholar
    • Hou, T. and X. Xu . ADME evaluation in drug discovery. J. Mol. Model. 8: 337–349, 2002. Crossref, Medline, ISIGoogle Scholar
    • Huang, C., C. Zheng, Y. Li, Y. Wang, A. Lu and L. Yang . Systems pharmacology in drug discovery and therapeutic insight for herbal medicines. Brief Bioinform. 15: 710–733, 2014. Crossref, Medline, ISIGoogle Scholar
    • Ikemura, M., Y. Sasaki, J.C. Giddings and J. Yamamoto . Protective effects of nobiletin on hypertension and cerebral thrombosis in stroke-prone spontaneously hypertensive rats (SHRSP). Food Nutr. Sci. 3: 1539–1546, 2012. Google Scholar
    • Ito, K., G. Caramori and I.M. Adcock . Therapeutic potential of phosphatidylinositol 3-kinase inhibitors in inflammatory respiratory disease. J. Pharmacol. Exp. Ther. 321: 1–8, 2007. Crossref, Medline, ISIGoogle Scholar
    • Keiser, M.J., B.L. Roth, B.N. Armbruster, P. Ernsberger, J.J. Irwin and B.K. Shoichet . Relating protein pharmacology by ligand chemistry. Nat. Biotechnol. 25: 197, 2007. Crossref, Medline, ISIGoogle Scholar
    • Kianmehr, M., A. Rezaei and M.H. Boskabady . Effect of carvacrol on various cytokines genes expression in splenocytes of asthmatic mice. Iran. J. Basic Med. Sci. 19: 402–410, 2016. Medline, ISIGoogle Scholar
    • Knox, C., V. Law, T. Jewison, P. Liu, S. Ly, A. Frolkis, A. Pon, K. Banco, C. Mak and V. Neveu . DrugBank 3.0: A comprehensive resource for ‘Omics’ research on drugs. Nucleic Acids Res. 39: 1035–1041, 2011. Crossref, Medline, ISIGoogle Scholar
    • Koury, J., L. Zhong and J. Hao . Targeting signaling pathways in cancer stem cells for cancer treatment. Stem Cells Int. 2017: 1–10, 2017. Crossref, ISIGoogle Scholar
    • Laine, D.I. , Long-acting muscarinic antagonists for the treatment of chronic obstructive pulmonary disease. Exp. Rev. Clin. Phar. 3: 43–53, 2010. Crossref, MedlineGoogle Scholar
    • Lee, Y.Y., E. Lee, J. Park, S. Jang, D. Kim and H. Kim . Anti-inflammatory and antioxidant mechanism of tangeretin in activated microglia. J. Neuroimmune Pharm. 11: 294–305, 2016. Crossref, Medline, ISIGoogle Scholar
    • Liu, H., J. Wang, W. Zhou, Y. Wang and L. Yang . Systems approaches and polypharmacology for drug discovery from herbal medicines: An example using licorice. J. Ethnopharmacol. 146: 773–793, 2013. Crossref, Medline, ISIGoogle Scholar
    • Luo, M., H. Luo, P. Hu, Y. Yang, B. Wu and G. Zheng . Evaluation of chemical components in Citri Reticulatae Pericarpium of different cultivars collected from different regions by GC-MS and HPLC. Food Sci. Nutr. 6: 400–416, 2018. Crossref, Medline, ISIGoogle Scholar
    • Minghetti, L. , Cyclooxygenase-2 (COX-2) in inflammatory and degenerative brain diseases. J. Neuropathology Exp. Neur. 63: 901–910, 2004. Crossref, Medline, ISIGoogle Scholar
    • Ohnuma, K., B.L. Haagmans, R. Hatano, V.S. Raj, H. Mou, S. Iwata, N.H. Dang, B.J. Bosch and C. Morimoto . Inhibition of middle east respiratory syndrome coronavirus infection by anti-CD26 monoclonal antibody. J. Virol. 87: 13892–13899, 2013. Crossref, Medline, ISIGoogle Scholar
    • Qin, K., L. Zheng, H. Cai, G. Cao, Y. Lou, T. Lu, Y. Shu, W. Zhou and B. Cai . Characterization of chemical composition of pericarpium Citri Reticulatae volatile oil by comprehensive two-dimensional gas chromatography with high-resolution time-of-flight mass spectrometry. Evid. Based Complement. Alternat. Med. 2013: 237541–237541, 2013. Crossref, Medline, ISIGoogle Scholar
    • Rollins, D.A., M. Coppo and I. Rogatsky . Minireview: Nuclear Receptor Coregulators of the p160 Family: Insights into inflammation and metabolism. Mol. Endocrinol. 29: 502–517, 2015. Crossref, MedlineGoogle Scholar
    • Ru, J., P. Li, J. Wang, W. Zhou, B. Li, C. Huang, P. Li, Z. Guo, W. Tao and Y. Yang . TCMSP: A database of systems pharmacology for drug discovery from herbal medicines. J. Cheminformatics 6: 13, 2014. Crossref, Medline, ISIGoogle Scholar
    • Schmassmann, A., G. Zoidl, B.M. Peskar, B. Waser, D. Schmassmannsuhijar, J. Gebbers and J.C. Reubi . Role of the different isoforms of cyclooxygenase and nitric oxide synthase during gastric ulcer healing in cyclooxygenase-1 and -2 knockout mice. Am. J. Physiol. Gastrointest. Liver Physiol. 290: G747–G756, 2006. Crossref, Medline, ISIGoogle Scholar
    • Selmi, S., K. Rtibi, D. Grami, H. Sebai and L. Marzouki . Protective effects of orange (Citrus sinensis L.) peel aqueous extract and hesperidin on oxidative stress and peptic ulcer induced by alcohol in rat. Lipids Health Dis. 16: 1–12, 2017. Crossref, Medline, ISIGoogle Scholar
    • Shannon, P., A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, D. Ramage, N. Amin, B. Schwikowski and T. Ideker . Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13: 2498–2504, 2003. Crossref, Medline, ISIGoogle Scholar
    • Silva-García, O., R. Rico-Mata, M.C. Maldonado-Pichardo, A. Bravo-Patiño, J.J. Valdez-Alarcón, J. Aguirre-González and V.M. Baizabal-Aguirre . Glycogen synthase kinase 3α is the main isoform that regulates the transcription factors nuclear factor-kappa B and cAMP response element binding in bovine endothelial cells infected with Staphylococcus aureus. Front. Immunol. 9: 92, 2018. Crossref, Medline, ISIGoogle Scholar
    • Soler, X. and J.W. Ramsdell . Anticholinergics/Antimuscarinic drugs in asthma. Curr. Allergy Asthma Rep. 14: 484, 2014. Crossref, Medline, ISIGoogle Scholar
    • Solomon, D.H., S. Schneeweiss, R. Levin and J. Avorn . Relationship between COX-2 specific inhibitors and hypertension. Hypertension 44: 140–145, 2004. Crossref, Medline, ISIGoogle Scholar
    • Vistoli, G., A. Pedretti and B. Testa . Assessing drug-likeness — what are we missing?, Drug Discov. Today 13: 285–294, 2008. Crossref, Medline, ISIGoogle Scholar
    • Wang, Y., Z. Liu, C. Li, D. Li, Y. Ouyang, J. Yu, S. Guo, F. He and W. Wang . Drug target prediction based on the herbs components: The study on the multitargets pharmacological mechanism of qishenkeli acting on the coronary heart disease. Evid. Based Complement. Alternat. Med. 2012: 698531–698531, 2012. Medline, ISIGoogle Scholar
    • Wess, J., R.M. Eglen and D. Gautam . Muscarinic acetylcholine receptors: Mutant mice provide new insights for drug development. Nat. Rev. Drug Discov. 6: 721–733. 2007. Crossref, Medline, ISIGoogle Scholar
    • Xu, G., G. Jin, G. Fu, J. Ma, Y. Shi, O. Tang and J. Shan . Polymorphisms in the coagulation factor VII gene and the risk of myocardial infarction in patients undergoing coronary angiography. Chin. Med. J. 116: 1194–1197, 2003. Medline, ISIGoogle Scholar
    • Xu, X., W. Zhang, C. Huang, Y. Li, H. Yu, Y. Wang, J. Duan and Y. Ling . A novel chemometric method for the prediction of human oral bioavailability. Int. J. Mol. Sci. 13: 6964–6982, 2012. Crossref, Medline, ISIGoogle Scholar
    • Xue, R., Z. Fang, M. Zhang, Z. Yi, C. Wen and T. Shi . TCMID: Traditional Chinese Medicine integrative database for herb molecular mechanism analysis. Nucleic Acids Res. 41: 1089–1095, 2012. Crossref, ISIGoogle Scholar
    • Yi, L., N. Dong, S. Liu, Z. Yi and Y. Zhang . Chemical features of Pericarpium Citri Reticulatae and Pericarpium Citri Reticulatae Viride revealed by GC–MS metabolomics analysis. Food Chem. 186: 192–199, 2015. Crossref, Medline, ISIGoogle Scholar
    • Yu, H., J. Chen, X. Xu, Y. Li, H. Zhao, Y. Fang, X. Li, W. Zhou, W. Wang and Y. Wang . A systematic prediction of multiple drug-target interactions from chemical, genomic, and pharmacological data. PLoS One 7: e37608, 2012. Crossref, Medline, ISIGoogle Scholar
    • Yu, J., J. Su and G. Lv . Research progress in anti-cardiovascular and cerebrovascular disease activity of Citri Reticulatae Pericarpium. Chin. Tradit. Herbal Drugs 2016: 31, 2016. Google Scholar
    • Yu, X., S. Sun, Y. Guo, Y. Liu, D. Yang, G. Li and S. Lu . Citri Reticulatae Pericarpium (Chenpi): Botany, ethnopharmacology, phytochemistry, and pharmacology of a frequently used traditional Chinese medicine. J. Ethnopharmacol. 220: 265–282, 2018a. Crossref, Medline, ISIGoogle Scholar
    • Yu, X., Y. Zhang, D. Wang, L. Jiang and X. Xu. Identification of three kinds of citri reticulatae pericarpium based on deoxyribonucleic acid barcoding and high-performance liquid chromatography-diode array detection-electrospray ionization/mass spectrometry/mass spectrometry combined with chemometric analysis. Pharmacogn. Mag. 14: 64, 2018b. Google Scholar
    • Zeng, S.L., S.Z. Li, M.Y. Wei, B.Z. Chen, P. Li, G.D. Zheng and E.H. Liu . Evaluation of anti-lipase activity and bioactive flavonoids in the Citri Reticulatae Pericarpium from different harvest time. Phytomedicine 43: 103–109, 2018. Crossref, Medline, ISIGoogle Scholar
    • Zhang, Y., X. Mao, Q. Guo, N. Lin and S. Li . Network pharmacology-based approaches capture essence of Chinese herbal medicines. Chin. Herbal Med. 8: 107–116. 2016. Crossref, ISIGoogle Scholar
    • Zheng, G., P. Zhou, H. Yang, Y. Li, P. Li and E.H. Liu . Rapid resolution liquid chromatography-electrospray ionisation tandem mass spectrometry method for identification of chemical constituents in Citri Reticulatae Pericarpium. Food Chem. 136: 604–611, 2013. Crossref, Medline, ISIGoogle Scholar
    • Zhou, W., Z. Chen, W. Li, Y. Wang, X. Li, H. Yu, P. Ran and Z. Liu . Systems pharmacology uncovers the mechanisms of anti-asthma herbal medicine intervention (ASHMI) for the prevention of asthma. J. Funct. Foods 52: 611–619, 2019a. Crossref, ISIGoogle Scholar
    • Zhou, W., Z. Chen, Y. Wang, X. Li, A. Lu, X. Sun and Z. Liu . Systems pharmacology-based method to assess the mechanism of action of weight-loss herbal intervention therapy for obesity. Front. Pharmacol. 10: 1165, 2019b. Crossref, Medline, ISIGoogle Scholar
    • Zhou, W., J. Wang, Z. Wu, C. Huang, A. Lu and Y. Wang . Systems pharmacology exploration of botanic drug pairs reveals the mechanism for treating different diseases. Sci. Rep. 6: 1–17, 2016. Medline, ISIGoogle Scholar
    • Zhou, W. and Y. Wang . A network-based analysis of the types of coronary artery disease from traditional Chinese medicine perspective: Potential for therapeutics and drug discovery. J. Ethnopharmacol. 151: 66–77, 2014. Crossref, Medline, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Chinese Medicine Titles today.
    Includes titles by Nobel Winner, Tu You You and more!