World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Gut Microbiota in Tumor Microenvironment: A Critical Regulator in Cancer Initiation and Development as Potential Targets for Chinese Medicine

    https://doi.org/10.1142/S0192415X21500270Cited by:17 (Source: Crossref)

    Cancer is a disease with a high mortality and disability rate. Cancer consists not only of cancer cells, but also of the surrounding microenvironment and tumor microenvironment (TME) constantly interacting with tumor cells to support tumor development and progression. Over the last decade, accumulating evidence has implicated that microbiota profoundly influences cancer initiation and progression. Most research focuses on gut microbiota, for the gut harbors the largest collection of microorganisms. Gut microbiota includes bacteria, viruses, protozoa, archaea, and fungi in the gastrointestinal tract, affecting DNA damage, host immune response and chronic inflammation in various types of cancer (i.e., colon cancer, gastric cancer and breast cancer). Notably, gut dysbiosis can reshape tumor microenvironment and make it favorable for tumor growth. Recently, accumulating studies have attached the importance of traditional Chinese medicine (TCM) to cancer treatments, and the bioactive natural compounds have been considered as potential drug candidates to suppress cancer initiation and development. Interestingly, more recent studies demonstrate that TCM could potentially prevent and suppress early-stage cancer progression through the regulation of gut microbiota. This review is on the purpose of exhausting the significance of gut microbiota in the tumor microenvironment as potential targets of Chinese medicine.

    References

    • Abdulamir, A.S., R.R. Hafidh and F.A. Bakar . Molecular detection, quantification, and isolation of Streptococcus gallolyticus bacteria colonizing colorectal tumors: Inflammation-driven potential of carcinogenesis via il-1, cox-2, and il-8. Mol. Cancer 9: 249, 2010. Crossref, Medline, Web of ScienceGoogle Scholar
    • Alfano, M., F. Canducci, M. Nebuloni, M. Clementi, F. Montorsi and A. Salonia . The interplay of extracellular matrix and microbiome in urothelial bladder cancer. Nat. Rev. Urol. 13: 77–90, 2016. Crossref, Medline, Web of ScienceGoogle Scholar
    • Alfaro, C., M.F. Sanmamed, M.E. Rodríguez-Ruiz, A.́ Teijeira, C. Oñate, A.́ González, M. Ponz, K.A. Schalper, J.L. Pérez-Gracia and I. Melero . Interleukin-8 in cancer pathogenesis, treatment and follow-up. Cancer Treat. Rev. 60: 24–31, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Arthur, J.C., R.Z. Gharaibeh, M. Mühlbauer, E. Perez-Chanona, J.M. Uronis, J. McCafferty, A.A. Fodor and C. Jobin . Microbial genomic analysis reveals the essential role of inflammation in bacteria-induced colorectal cancer. Nat. Commun. 5: 4724–4724, 2014. Crossref, Medline, Web of ScienceGoogle Scholar
    • Balkwill, F. and A. Mantovani . Inflammation and cancer: Back to Virchow?. Lancet 357: 539–545, 2001. Crossref, Medline, Web of ScienceGoogle Scholar
    • Binnewies M, E.W. Roberts, K. Kersten, V. Chan, D.F. Fearon, M. Merad, L.M. Coussens, D.I. Gabrilovich, S. Ostrand-Rosenberg and C.C. Hedrick . Understanding the tumor immune microenvironment (time) for effective therapy. Nat. Med. 24: 541–550, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Cane, G., A. Ginouvès, S. Marchetti, R. Buscà, J. Pouysségur, E. Berra, P. Hofman and V. Vouret-Craviari . Hif-1α mediates the induction of IL-8 and VEGF expression on infection with Afa/Dr diffusely adhering E. coli and promotes EMT-like behaviour. Cell. Microbiol. 12: 640–653, 2010. Crossref, Medline, Web of ScienceGoogle Scholar
    • Caputo R., C. Tuccillo, B.A. Manzo, R. Zarrilli, G. Tortora, V. Blanco Cdel, V. Ricci, F. Ciardiello and M. Romano . Helicobacter pylori VacA toxin upregulates vascular endothelial growth factor expression in MKN-28 gastric cells through an epidermal growth factor receptor-, cyclooxygenase-2-dependent mechanism. Clin. Cancer Res. 9: 2015–2021, 2003. Medline, Web of ScienceGoogle Scholar
    • Choi, H. and A. Moon . Crosstalk between cancer cells and endothelial cells: Implications for tumor progression and intervention. Arch. Pharm. Res. 41: 711–724, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Cui J., Y. Chen, H.Y. Wang and R.F. Wang . Mechanisms and pathways of innate immune activation and regulation in health and cancer. Hum. Vaccin. Immunother. 10: 3270–3285, 2014. Crossref, Medline, Web of ScienceGoogle Scholar
    • De Sanctis, F., S. Ugel, J. Facciponte and A. Facciabene . The dark side of tumor-associated endothelial cells. Semin. Immunol. 35: 35–47, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Deswaerte, V., P. Nguyen, A. West, A.F. Browning, L. Yu, S.M. Ruwanpura, J. Balic, T. Livis, C. Girard and A. Preaudet . Inflammasome adaptor ASC suppresses apoptosis of gastric cancer cells by an il18-mediated inflammation-independent mechanism. Cancer Res. 78: 1293–1307, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Di Domenico, E.G., I. Cavallo, M. Pontone, L. Toma and F. Ensoli . Biofilm producing salmonella typhi: Chronic colonization and development of gallbladder cancer. Int. J. Mol. Sci. 18: 1887, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Dubinsky, M. and B. Jonathan . Diagnostic and prognostic microbial biomarkers in inflammatory bowel diseases. Gastroenterology 149: 1265–1274.e3, 2015. Crossref, Medline, Web of ScienceGoogle Scholar
    • Erny, D., A.L. Hrabě de Angelis, D. Jaitin, P. Wieghofer, O. Staszewski, E. David, H. Keren-Shaul, T. Mahlakoiv, K. Jakobshagen and T. Buch . Host microbiota constantly control maturation and function of microglia in the CNS. Nat. Neurosci. 18: 965–977, 2015. Crossref, Medline, Web of ScienceGoogle Scholar
    • Faure, E., L. Thomas, H. Xu, A. Medvedev, O. Equils and M. Arditi . Bacterial lipopolysaccharide and IFN-gamma induce toll-like receptor 2 and toll-like receptor 4 expression in human endothelial cells: Role of NF-kappa B activation. J. Immunol. 166: 2018–2024, 2001. Crossref, Medline, Web of ScienceGoogle Scholar
    • Fitzmaurice, C., D. Abate, N. Abbasi, H. Abbastabar, F. Abd-Allah, O. Abdel-Rahman, A. Abdelalim, A. Abdoli, I. Abdollahpour and A.S.M. Abdulle . Global, regional, and national cancer incidence, mortality, years of life lost, years lived with disability, and disability-adjusted life-years for 29 cancer groups, 1990 to 2017: A systematic analysis for the global burden of disease study. JAMA Oncol. 5: 1749–68, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Fung, T.C. , The microbiota-immune axis as a central mediator of gut-brain communication. Neurobiol. Dis. 136: 104714, 2020. Crossref, Medline, Web of ScienceGoogle Scholar
    • Goldberg, S.B., S.N. Gettinger, A. Mahajan, A.C. Chiang, R.S. Herbst, M. Sznol, A.J. Tsiouris, J. Cohen, A. Vortmeyer and L. Jilaveanu . Pembrolizumab for patients with melanoma or non-small-cell lung cancer and untreated brain metastases: Early analysis of a non-randomised, open-label, phase 2 trial. Lancet Oncol. 17: 976–983, 2016. Crossref, Medline, Web of ScienceGoogle Scholar
    • Goodman, B. and G. Humphrey . The microbiome and cancer. J. Pathol. 244: 667–676, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Gopalakrishnan, V., C.N. Spencer, L. Nezi, A. Reuben, M.C. Andrews, T.V. Karpinets, P.A. Prieto, D. Vicente, K. Hoffman and S.C. Wei . Gut microbiome modulates response to anti-PD-1 immunotherapy in melanoma patients. Science 359: 97–103, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Greenhalgh, K., M.M. Kristen, M.A. Kjersti and W. Paul . The human gut microbiome in health: Establishment and resilience of microbiota over a lifetime. Environ. Microbiol. 18: 2103–2116, 2016. Crossref, Medline, Web of ScienceGoogle Scholar
    • Gur, C., Y. Ibrahim, B. Isaacson, R. Yamin, J. Abed, M. Gamliel, J. Enk, Y. Bar-On, N. Stanietsky-Kaynan and S. Coppenhagen-Glazer . Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity 42: 344–355, 2015. Crossref, Medline, Web of ScienceGoogle Scholar
    • Hanahan, D. and A.W. Robert . Hallmarks of cancer: The next generation. Cell 144: 646–674, 2011. Crossref, Medline, Web of ScienceGoogle Scholar
    • Henao-Mejia, J., E. Elinav, C. Jin, L. Hao, W.Z. Mehal, T. Strowig, C.A. Thaiss, A.L. Kau, S.C. Eisenbarth and M.J. Jurczak . Inflammasome-mediated dysbiosis regulates progression of nafld and obesity. Nature 482: 179–185, 2012. Crossref, Medline, Web of ScienceGoogle Scholar
    • Hu, B., E. Elinav, S. Huber, T. Strowig, L. Hao, A. Hafemann, C. Jin, C. Wunderlich, T. Wunderlich and S.C. Eisenbarth . Microbiota-induced activation of epithelial IL-6 signaling links inflammasome-driven inflammation with transmissible cancer. Proc. Natl. Acad. Sci. USA 110: 9862–9867, 2013. Crossref, Medline, Web of ScienceGoogle Scholar
    • Karki, R. and T.D. Kanneganti . Diverging inflammasome signals in tumorigenesis and potential targeting. Nat. Rev. Cancer 19: 197–214, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Kim, O.Y., H.T. Park, N. Dinh, S.J. Choi, J. Lee, J.H. Kim, S.W. Lee, and Y.S. Gho . Bacterial outer membrane vesicles suppress tumor by interferon-γ-mediated antitumor response. Nat. Commun. 8: 626–626, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Kim, S.H., J. Turnbull and S. Guimond . Extracellular matrix and cell signalling: The dynamic cooperation of integrin, proteoglycan and growth factor receptor. J. Endocrinol. 209: 139–151, 2011. Crossref, Medline, Web of ScienceGoogle Scholar
    • Konstantinou, M.P., C. Dutriaux, C. Gaudy-Marqueste, L. Mortier, C. Bedane, C. Girard, S. Thellier, T. Jouary, J.J. Grob and M.A. Richard . Ipilimumab in melanoma patients with brain metastasis: A retrospective multicentre evaluation of thirty-eight patients. Acta Derm. Venereol. 94: 45–49, 2014. Crossref, Medline, Web of ScienceGoogle Scholar
    • Kröncke, K.-D. , Nitrosative stress and transcription. Biol. Chem. 384: 1365–1377, 2003. Crossref, Medline, Web of ScienceGoogle Scholar
    • Lin, L., H. Wei, J. Yi, B. Xie, J. Chen, C. Zhou, L. Wang and Y. Yang . Chronic agA-positive Helicobacter pylori infection with MNNG stimulation synergistically induces mesenchymal and cancer stem cell-like properties in gastric mucosal epithelial cells. J. Cell. Biochem. 120: 17635–17649, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Liu, T., Z. Guo, X. Song, L. Liu, W. Dong, S. Wang, M. Xu, C. Yang, B. Wang and H. Cao . High-fat diet-induced dysbiosis mediates MCP-1/CCR2 axis-dependent M2 macrophage polarization and promotes intestinal adenoma-adenocarcinoma sequence. J. Cell. Mol. Med. 24: 2648–2662, 2020. Crossref, Medline, Web of ScienceGoogle Scholar
    • Liu, X.R., L.Y. Wang, N. Jing, G.Q. Jiang and Z. Liu . Biostimulating gut microbiome with bilberry anthocyanin combo to enhance anti-PD-l1 efficiency against murine colon cancer. Microorganisms 8: 14, 2020. Web of ScienceGoogle Scholar
    • Liu, X.Y., L. Rong, W. Shaoping and S. Jun . Salmonella regulation of intestinal stem cells through the Wnt/β-catenin pathway. FEBS Lett. 584: 911–916, 2010. Crossref, Medline, Web of ScienceGoogle Scholar
    • Lv, J., Y.T. Jia, J. Li, W.T. Kuai, Y. Li, F. Guo, X.J. Xu, Z.L. Zhao, J. Lv and Z.X. Li . Gegen qinlian decoction enhances the effect of PD-1 blockade in colorectal cancer with microsatellite stability by remodelling the gut microbiota and the tumour microenvironment. Cell Death Dis. 10: 15, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Lyczak, J.B., C.L. Cannon and G.B. Pier . Establishment of pseudomonas aeruginosa infection: Lessons from a versatile opportunist. Microbes Infect. 2: 1051–1060, 2000. Crossref, Medline, Web of ScienceGoogle Scholar
    • Ma, C., H. Miaojun, H. Bernd, F. Qiong, Z. Qianfei, S. Milan, A. David and T. Masaki . Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells. Science 360: eaan5931, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Ma, H., Y. Yu, M.M. Wang, Z.X. Li, H.S. Xu, C. Tian, J. Zhang, X.L. Ye and X.G. Li . Correlation between microbes and colorectal cancer: Tumor apoptosis is induced by sitosterols through promoting gut microbiota to produce short-chain fatty acids. Apoptosis 24: 168–183, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Macia, L., J. Tan, A.T. Vieira, K. Leach, D. Stanley, S. Luong, M. Maruya, C. Ian McKenzie, A. Hijikata and C. Wong . Metabolite-sensing receptors gpr43 and gpr109a facilitate dietary fibre-induced gut homeostasis through regulation of the inflammasome. Nat. Commun. 6: 6734–6734, 2015. Crossref, Medline, Web of ScienceGoogle Scholar
    • Man, S.M. , Inflammasomes in the gastrointestinal tract: Infection, cancer and gut microbiota homeostasis. Nat. Rev. Gastroenterol. Hepatol. 15: 721–737, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Matson, V., J. Fessler, R. Bao, T. Chongsuwat, Y. Zha, M.L. Alegre, J.J. Luke and T.F. Gajewski . The commensal microbiome is associated with anti–PD-1 efficacy in metastatic melanoma patients. Science 359: 104–108, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Murata, M. , Inflammation and cancer. Environ. Health Prev. Med. 23: 50, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Nagy, J.A., S.H. Chang, S.C. Shih, A.M. Dvorak and H.F. Dvorak . Heterogeneity of the tumor vasculature. Semin. Thromb. Hemost. 36: 321–331, 2010. Crossref, Medline, Web of ScienceGoogle Scholar
    • Nusse, R. and H. Clevers . Wnt/β-catenin signaling, disease, and emerging therapeutic modalities. Cell 169: 985–999, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Ohno, M., A. Nishida, Y. Sugitani, K. Nishino, O. Inatomi, M. Sugimoto, M. Kawahara and A. Andoh . Nanoparticle curcumin ameliorates experimental colitis via modulation of gut microbiota and induction of regulatory T cells. PLoS One 12: e0185999, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Park, J.H., T.Y. Kim, H.S. Jong, T.Y. Kim, Y.S. Chun, J.W. Park, C.T. Lee, H.C. Jung, N.K Kim and Y.J. Bang . Gastric epithelial reactive oxygen species prevent normoxic degradation of hypoxia-inducible factor-1α in gastric cancer cells. Clin. Cancer Res. 9: 433–440, 2003. Medline, Web of ScienceGoogle Scholar
    • Pathria, P., T.L. Louis and J.A. Varner . Targeting tumor-associated macrophages in cancer. Trends Immunol. 40: 310–327, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Peng, F., X. Xie and C. Peng . Chinese herbal medicine-based cancer therapy: Novel anticancer agents targeting microRNAs to regulate tumor growth and metastasis. Am. J. Chin. Med. 47: 1711–1735, 2019. Link, Web of ScienceGoogle Scholar
    • Peng, F., L. Xiong, X. Xie, H. Tang, R. Huang and C. Peng . Isoliquiritigenin derivative regulates miR-374a/BAX axis to suppress triple-negative breast cancer tumorigenesis and development. Front. Pharmacol. 11: 378, 2020. Crossref, Medline, Web of ScienceGoogle Scholar
    • Peuker, K., S. Muff, J. Wang, S. Künzel, E. Bosse, Y. Zeissig, G. Luzzi, M. Basic, A. Strigli and A. Ulbricht . Epithelial calcineurin controls microbiota-dependent intestinal tumor development. Nat. Med. 22: 506–515, 2016. Crossref, Medline, Web of ScienceGoogle Scholar
    • Pevsner-Fischer, M., T. Tuganbaev, M. Meijer, S.H. Zhang, Z.R. Zeng, M.H. Chen and E. Elinav . Role of the microbiome in non-gastrointestinal cancers. World J. Clin. Oncol. 7: 200–213, 2016. Crossref, Medline, Web of ScienceGoogle Scholar
    • Pushalkar, S., M. Hundeyin, D. Daley, C.P. Zambirinis, E. Kurz, A. Mishra, N. Mohan, B. Aykut, M. Usyk and L.E. Torres . The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 8: 403–416, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Qi, J.M., J.T. Yu, Y.T. Li, J.M. Luo, C. Zhang, S.Y. Ou, G.W. Zhang, X.Q. Yang and X.C. Peng . Alternating consumption of beta-glucan and quercetin reduces mortality in mice with colorectal cancer. Food Sci. Nutr. 7: 3273–3285, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Routy, B., E. Le Chatelier, L. Derosa, C. Duong, M.T. Alou, R. Daillère, A. Fluckiger, M. Messaoudene, C. Rauber and M.P. Roberti . Gut microbiome influences efficacy of PD-1-based immunotherapy against epithelial tumors. Science 359: 91–97, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Rubinstein, M.R., J.E. Baik, S.M. Lagana, R.P. Han, W.J. Raab, D. Sahoo, P. Dalerba, T.C. Wang and Y.W. Han . Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator Annexin A1. EMBO J. Rep. 20: e47638, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Sajib, S., F.T. Zahra, M.S. Lionakis, N.A. German and C.M. Mikelis . Mechanisms of angiogenesis in microbe-regulated inflammatory and neoplastic conditions. Angiogenesis 21: 1–14, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Schildberg, F.A., R.K. Sarah, J.F. Gordon and H.S. Arlene . Coinhibitory pathways in the B7-CD28 ligand-receptor family. Immunity 44: 955–972, 2016. Crossref, Medline, Web of ScienceGoogle Scholar
    • Schirbel, A., S. Kessler, F. Rieder, G. West, N. Rebert, K. Asosingh, C. McDonald and C. Fiocchi . Pro-angiogenic activity of TLRs and NLRs: A novel link between gut microbiota and intestinal angiogenesis. Gastroenterology 144: 613–623.e9, 2013. Crossref, Medline, Web of ScienceGoogle Scholar
    • Silva-García, O., J.J. Valdez-Alarcón and V.M. Baizabal-Aguirre . Wnt/β-catenin signaling as a molecular target by pathogenic bacteria. Front. Immunol. 10: 2135, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Sivan, A., L. Corrales, N. Hubert, J.B. Williams, K. Aquino-Michaels, Z.M. Earley, F.W. Benyamin, Y.M. Lei, B. Jabri and M.L. Alegre . Commensal bifidobacterium promotes antitumor immunity and facilitates anti-PD-l1 efficacy. Science 350: 1084–1089, 2015. Crossref, Medline, Web of ScienceGoogle Scholar
    • Song, X., Y. Li, H. Zhang and Q. Yang . The anticancer effect of Huaier. Oncol. Rep. 34: 12–21, 2015. Crossref, Medline, Web of ScienceGoogle Scholar
    • Spaw, M., S. Anant and S.M. Thomas . Stromal contributions to the carcinogenic process. Mol. Carcinog. 56: 1199–1213, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Stidham, R.W. and P.D.R. Higgins . Colorectal cancer in inflammatory bowel disease. Clin. Colon Rectal Surg. 31: 168–178, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Su, J.Y., L. Su, D. Li, O. Shuai, Y.F. Zhang, H.J. Liang, C.W. Jiao, Z.C. Xu, Y. Lai and Y.Z. Xie . Antitumor activity of extract from the sporoderm-breaking spore of ganoderma lucidum: Restoration on exhausted cytotoxic t cell with gut microbiota remodeling. Front. Immunol. 9: 19, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Thiele Orberg, E., H. Fan, A.J. Tam, C.M. Dejea, C.E. Destefano Shields, S. Wu, L. Chung, B.B. Finard, X. Wu and P. Fathi . The myeloid immune signature of enterotoxigenic bacteroides fragilis-induced murine colon tumorigenesis. Mucosal Immunol. 10: 421–433, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Vancamelbeke, M. and S. Vermeire . The intestinal barrier: A fundamental role in health and disease. Expert Rev. Gastroenterol. Hepatol. 11: 821–834, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Vétizou, M., J.M. Pitt, R. Daillère, P. Lepage, N. Waldschmitt, C. Flament, S. Rusakiewicz, B. Routy, M.P. Roberti, and C.P. Duong . Anticancer immunotherapy by CTLA-4 blockade relies on the gut microbiota. Science 350: 1079–1084, 2015. Crossref, Medline, Web of ScienceGoogle Scholar
    • Viaud, S., F. Saccheri, G. Mignot, T. Yamazaki, R. Daillère, D. Hannani, D.P. Enot, C. Pfirschke, C. Engblom and M.J. Pittet . The intestinal microbiota modulates the anticancer immune effects of cyclophosphamide. Science 342: 971–976, 2013. Crossref, Medline, Web of ScienceGoogle Scholar
    • Vivarelli, S., R. Salemi, S. Candido, L. Falzone, M. Santagati, S. Stefani, F. Torino, G.L. Banna, G. Tonini and M. Libra . Gut microbiota and cancer: From pathogenesis to therapy. Cancers (Basel) 11: 38, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Wang, F., M. Wenbo, W. Bingyuan and Q. Liang . Helicobacter pylori-induced gastric inflammation and gastric cancer. Cancer Lett. 345: 196–202, 2014. Crossref, Medline, Web of ScienceGoogle Scholar
    • Wang, L.Y., N. Jing, X.R. Liu, G.Q. Jiang and Z. Liu . Nurturing and modulating gut microbiota with jujube powder to enhance anti-PD-l1 efficiency against murine colon cancer. J. Funct. Foods 64: 7, 2020. Crossref, Web of ScienceGoogle Scholar
    • Wang, T., C. Fan, A. Yao, X. Xu, G. Zheng, Y. You, C. Jiang, X. Zhao, Y. Hou and M.C. Hung . The adaptor protein card9 protects against colon cancer by restricting mycobiota-mediated expansion of myeloid-derived suppressor cells. Immunity 49: 504–514.e4, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Wang, X., T. Ye, W. J. Chen, Y. Lv, Z. Hao, J. Chen, J.Y. Zhao, H.P. Wang and Y.K. Cai . Structural shift of gut microbiota during chemo-preventive effects of epigallocatechin gallate on colorectal carcinogenesis in mice. World J. Gastroenterol. 23: 8128–8139, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Weng, W.H. and G. Ajay . Curcumin and colorectal cancer: An update and current perspective on this natural medicine. Semin. Cancer Biol. 2020. Crossref, Web of ScienceGoogle Scholar
    • Wong, S.H., L. Zhao, X. Zhang, G. Nakatsu, J. Han, W. Xu, X. Xiao, T. Kwong, H. Tsoi, W. Wu, B. Zeng, F. Chan, J. Sung, H. Wei and J. Yu . Gavage of fecal samples from patients with colorectal cancer promotes intestinal carcinogenesis in germ-free and conventional mice. Gastroenterology 153: 1621–1633.e6, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Wu, M.N., Y.Q. Wu, B.G. Deng, J.S. Li, H.Y. Cao, Y. Qu, X.L. Qian and G.S. Zhong . Isoliquiritigenin decreases the incidence of colitis-associated colorectal cancer by modulating the intestinal microbiota. Oncotarget 7: 85318–85331, 2016. Crossref, MedlineGoogle Scholar
    • Wu, T. and D. Yun . Tumor microenvironment and therapeutic response. Cancer Lett. 387: 61–68, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Yeo, M., D.K. Kim, S.U. Han, J.E. Lee, Y.B. Kim, Y.K. Cho, J.H. Kim, S.W. Cho and K.B. Hahm . Novel action of gastric proton pump inhibitor on suppression of helicobacter pylori induced angiogenesis. Gut 55: 26–33, 2006. Crossref, Medline, Web of ScienceGoogle Scholar
    • Yu, T., F. Guo, Y. Yu, T. Sun, D. Ma, J. Han, Y. Qian, I. Kryczek, D. Sun and N. Nagarsheth . Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell 170: 548–563.e16, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Zhang, X.Y., S.W. Zhao, X.B. Song, J.W. Jia, Z.Y. Zhang, H.F. Zhou, H. Fu, H.T. Cui, S. Hu and M.J. Fang . Inhibition effect of glycyrrhiza polysaccharide (GCP) on tumor growth through regulation of the gut microbiota composition. J. Pharmacol. Sci. 137: 324–332, 2018. Crossref, Medline, Web of ScienceGoogle Scholar
    • Zhang, Y.Z., L.Y. Ran, C.Y. Li and X.L. Chen . Diversity, structures, and collagen-degrading mechanisms of bacterial collagenolytic proteases. Appl. Environ. Microbiol. 81: 6098–6107, 2015. Crossref, Medline, Web of ScienceGoogle Scholar
    • Zhen, H.D., X. Qian, X.X. Fu, Z. Chen, A.Q. Zhang and L. Shi . Regulation of Shaoyao Ruangan mixture on intestinal flora in mice with primary liver cancer. Integr. Cancer Ther. 18: 9, 2019. Crossref, Web of ScienceGoogle Scholar
    • Zhong, C., N.R. Wall, Y. Zu and G. Sui . Therapeutic application of natural medicine monomers in cancer treatment. Curr. Med. Chem. 24: 3681–3697, 2017. Crossref, Medline, Web of ScienceGoogle Scholar
    • Zhou, P.J., Z.Y. Li, D.D. Xu, Y. Wang, Q. Bai, Y. Feng, G.F. Su, P.X. Chen, Y. Wang, H.Z. Liu, X.G. Wang, R. Zhang and Y.F. Wang . Cepharanthine hydrochloride improves cisplatin chemotherapy and enhances immunity by regulating intestinal microbes in mice. Front. Cell. Infect. Microbiol. 9: 1–16, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Chinese Medicine Titles today.
    Includes titles by Nobel Winner, Tu You You and more!