World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Effect of Sutellarin on Neurogenesis in Neonatal Hypoxia–Ischemia Rat Model: Potential Mechanisms of Action

https://doi.org/10.1142/S0192415X21500312Cited by:9 (Source: Crossref)

To investigate the therapeutic efficacy of Scutellarin (SCU) on neurite growth and neurological functional recovery in neonatal hypoxic-ischemic (HI) rats. Primary cortical neurons were cultured to detect the effect of SCU on cell viability of neurons under oxygen-glucose deprivation (OGD). Double immunofluorescence staining of Tuj1 and TUNEL then observed the neurite growth and cell apoptosis in vitro,and double immunofluorescence staining of NEUN and TUNEL was performed to examine the neuronal apoptosis and cell apoptosis in brain tissues after HI in vivo. Pharmacological efficacy of SCU was also evaluated in HI rats by neurobehavioral tests, triphenyl tetrazolium chloride staining, Hematoxylin and eosin staining and Nissl staining. Astrocytes and microglia expression in damaged brain tissues were detected by immunostaining of GFAP and Iba1. A quantitative real-time polymerase chain reaction and western blot were applied to investigate the genetic expression changes and the protein levels of autophagy-related proteins in the injured cortex and hippocampus after HI. We found that SCU administration preserved cell viability, promoted neurite outgrowth and suppressed apoptosis of neurons subjected to OGD both in vitroand in vivo. Meanwhile, 20 mg/kg SCU treatment improved neurological functions and decreased the expression of astrocytes and microglia in the cortex and hippocampus of HI rats. Additionally, SCU treatment depressed the elevated levels of autophagy-related proteins and the p75 neurotrophin receptor (p75NTR) in both cortex and hippocampus. This study demonstrated the potential therapeutic efficacy of SCU by enhancing neurogenesis and restoring long-term neurological dysfunctions, which might be associated with p75NTR depletion in HI rats.

References

  • Adam, F., M. Lina, S.L. Bonifacio, V. Davide and G.B. Joseph . Gentamicin pharmacokinetics and dosing in neonates with hypoxic ischemic encephalopathy receiving hypothermia. Pharmacotherapy 33: 718–726, 2013. Crossref, Medline, ISIGoogle Scholar
  • Bakeberg, M.C., A. Jefferson, M. Riley, M. Byrnes, S. Ghosh, F.L. Mastaglia, M.K. Horne, S. McGregor, R. Stell, J. Kenna, S. Walters, D. Hince and R.S. Anderton . Elevated serum homocysteine levels have differential gender-specific associations with motor and cognitive states in Parkinson’s disease. Parkinsons Dis. 2019: 3124295, 2019. Medline, ISIGoogle Scholar
  • Baluchnejadmojarad, T., H. Zeinali and M. Roghani . Scutellarin alleviates lipopolysaccharide-induced cognitive deficits in the rat: Insights into underlying mechanisms. Int. Immunopharmacol. 54: 311–319, 2018. Crossref, Medline, ISIGoogle Scholar
  • Chao, M.V. , Neurotrophins and their receptors: A convergence point for many signalling pathways. Nat. Rev. Neurosci. 4: 299–309, 2003. Crossref, Medline, ISIGoogle Scholar
  • Chen, W., R. Hartman, R. Ayer, S. Marcantonio, J. Kamper, J. Tang and J.H. Zhang . Matrix metalloproteinases inhibition provides neuroprotection against hypoxia-ischemia in the developing brain. J. Neurochem. 111: 726–736, 2009. Crossref, Medline, ISIGoogle Scholar
  • Chen, X.Q., M. Sawa and W.C. Mobley . Dysregulation of neurotrophin signaling in the pathogenesis of Alzheimer disease and of Alzheimer disease in down syndrome. Free Radic. Biol. Med. 114: 52–61, 2018. Crossref, Medline, ISIGoogle Scholar
  • Chen, Y., J. Zeng, L. Cen, Y. Chen, X. Wang, G. Yao, W. Wang, W. Qi and K. Kong . Multiple roles of the p75 neurotrophin receptor in the nervous system. J. Int. Med. Res. 37: 281–288, 2009. Crossref, Medline, ISIGoogle Scholar
  • Chen, Y.J., L. Wang, G.Y. Zhou, X.L. Yu, Y.H. Zhang, N. Hu, Q.Q. Li, C. Chen, C. Qing, Y.T. Liu and W.M. Yang . Scutellarin attenuates endothelium-dependent aasodilation impairment induced by hypoxia reoxygenation, through regulating the PKG signaling pathway in rat coronary artery. Chin. J. Nat. Med. 13: 264–273, 2015. Crossref, Medline, ISIGoogle Scholar
  • Coleman, L.G., Jr.,, J. Zou, L. Qin and F.T. Crews . Hmgb1/il-1β complexes regulate neuroimmune responses in alcoholism. Brain Behav. Immun. 72: 61–77, 2018. Crossref, Medline, ISIGoogle Scholar
  • Copray, J.C., D. Jaarsma, B.M. Kust, R.W. Bruggeman, I. Mantingh, N. Brouwer and H.W. Boddeke . Expression of the low affinity neurotrophin receptor p75 in spinal motoneurons in a transgenic mouse model for amyotrophic lateral sclerosis. Neuroscience 116: 685–694, 2003. Crossref, Medline, ISIGoogle Scholar
  • Du, X., C. Chen, M. Zhang, D. Cai, J. Sun, J. Yang, N. Hu, C. Ma, L. Zhang, J. Zhang and W. Yang . Scutellarin reduces endothelium dysfunction through the PKG-I pathway. Evid.-Based Complement. Alternat. Med. 2015: 430271, 2015. Crossref, Medline, ISIGoogle Scholar
  • Fang, M., Y. Yuan, P. Rangarajan, J. Lu, Y. Wu, H. Wang, C. Wu and E.A. Ling . Scutellarin regulates microglia-mediated TNC1 astrocytic reaction and astrogliosis in cerebral ischemia in the adult rats. BMC Neurosci. 16: 84, 2015. Crossref, Medline, ISIGoogle Scholar
  • Feng, Y., S. Zhang, J. Tu, Z. Cao, Y. Pan, B. Shang, R. Liu, M. Bao, P. Guo and Q. Zhou . Novel function of scutellarin in inhibiting cell proliferation and inducing cell apoptosis of human burkitt lymphoma namalwa cells. Leuk. Lymphoma 53: 2456–2464, 2012. Crossref, Medline, ISIGoogle Scholar
  • Finer, N.N., C.M. Robertson, R.T. Richards, L.E. Pinnell and K.L. Peters . Hypoxic-ischemic encephalopathy in term neonates: Perinatal factors and outcome. J. Pediatr. 98: 112–117, 1981. Crossref, Medline, ISIGoogle Scholar
  • Gal, J., A.L. Ström, D.M. Kwinter, R. Kilty, J. Zhang, P. Shi, W. Fu, M.W. Wooten and H. Zhu . Sequestosome 1/p62 links familial ALS mutant SOD1 to LC3 via an ubiquitin-independent mechanism. J. Neurochem. 111: 1062–1073, 2009. Crossref, Medline, ISIGoogle Scholar
  • Guo, H., L.M. Hu, S.X. Wang, Y.L. Wang, F. Shi, H. Li, Y. Liu, L.Y. Kang and X.M. Gao . Neuroprotective effects of scutellarin against hypoxic-ischemic-induced cerebral injury via augmentation of anti-oxidant defense capacity. Chin. J. Physiol. 54: 399–405, 2011a. Medline, ISIGoogle Scholar
  • Guo, L., Z. Guan and Y. Wang . Scutellarin protects against a β-induced learning and memory deficits in rats: Involvement of nicotinic acetylcholine receptors and cholinesterase. Acta Pharmacol. Sin. 32: 1446–1453, 2011b. Crossref, Medline, ISIGoogle Scholar
  • Guo, L.L., Y.L. Wang and Y. Huang . Effect of scutellarin on expressions of nicotinic acetylcholine receptor protein and mRNA in the brains of dementia rats. Zhongguo Zhong XI Yi Jie He Za Zhi 31: 789–793, 2011c. MedlineGoogle Scholar
  • Hamanoue, M., G. Middleton, S. Wyatt, E. Jaffray, R.T. Hay and A.M. Davies . p75-mediated NF-kappab activation enhances the survival response of developing sensory neurons to nerve growth factor. Mol. Cell. Neurosci. 14: 28–40, 1999. Crossref, Medline, ISIGoogle Scholar
  • Ibanez, C.F. and A. Simi . p75 neurotrophin receptor signaling in nervous system injury and degeneration: Paradox and opportunity. Trends Neurosci. 35: 431–440, 2012. Crossref, Medline, ISIGoogle Scholar
  • Kärjä, V. and I. Alafuzoff . Protein p62 common in invaginations in benign meningiomas — a possible predictor of malignancy. Clin. Neuropathol. 25: 37–43, 2006. Medline, ISIGoogle Scholar
  • Kawarai, Y., H. Tanaka, T. Kobayashi and M. Shozu . Progesterone as a postnatal prophylactic agent for encephalopathy caused by prenatal hypoxic ischemic insult. Endocrinology 159: 2264–2274, 2018. Crossref, Medline, ISIGoogle Scholar
  • Lin, L.L., A.J. Liu, J.G. Liu, X.H. Yu, L.P. Qin and D.F. Su . Protective effects of scutellarin and breviscapine on brain and heart ischemia in rats. J. Cardiovas. Pharmacol. 50: 327–332, 2007. Crossref, Medline, ISIGoogle Scholar
  • Liu, H., X.L. Yang, Y. Wang, X.Q. Tang, D.Y. Jiang and H.B. Xu . Protective effects of scutellarin on superoxide-induced oxidative stress in rat cortical synaptosomes. Acta Pharmacol. Sin. 24: 1113–1117, 2003. Medline, ISIGoogle Scholar
  • Longa, E.Z., P.R. Weinstein, S. Carlson and R. Cummins . Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke 20: 84–91, 1989. Crossref, Medline, ISIGoogle Scholar
  • Lu, Y.Y., Z.Z. Li, D.S. Jiang, L. Wang, Y. Zhang, K. Chen, X.F. Zhang, Y. Liu, G.C. Fan, Y. Chen, Q. Yang, Y. Zhou, X.D. Zhang, D.P. Liu and H. Li . TRAF1 is a critical regulator of cerebral ischaemia-reperfusion injury and neuronal death. Nat. Commun. 4: 2852, 2013. Crossref, Medline, ISIGoogle Scholar
  • Marchetti, L., F. Bonsignore, F. Gobbo, R. Amodeo, M. Calvello, A. Jacob, G. Signore, C.S. Spagnolo, D. Porciani, M. Mainardi, F. Beltram, S. Luin and A. Cattaneo . Fast-diffusing p75(NTR) monomers support apoptosis and growth cone collapse by neurotrophin ligands. Proc. Natl. Acad. Sci. USA 116: 21563–21572, 2019. Crossref, Medline, ISIGoogle Scholar
  • Mori, K., S. Lammich, I.R.A. Mackenzie, I. Forné and C. Haass . HnRNP a3 binds to GGGGCC repeats and is a constituent of p62-positive/TDP43-negative inclusions in the hippocampus of patients with C9orf72 mutations. Acta Neuropathol. 125: 413–423, 2013. Crossref, Medline, ISIGoogle Scholar
  • Nykjaer, A., R. Lee, K.K. Teng, P. Jansen, P. Madsen, M.S. Nielsen, C. Jacobsen, M. Kliemannel, E. Schwarz, T.E. Willnow, B.L. Hempstead and C.M. Petersen . Sortilin is essential for proNGF-induced neuronal cell death. Nature 427: 843–848, 2004. Crossref, Medline, ISIGoogle Scholar
  • Olmos, G. and J. Lladó . Tumor necrosis factor alpha: A link between neuroinflammation and excitotoxicity. Mediators Inflamm. 2014: 861231, 2014. Crossref, Medline, ISIGoogle Scholar
  • Pan, Z., W. Zhao, X. Zhang, B. Wang, J. Wang, X. Sun, X. Liu, S. Feng, B. Yang and Y. Lu . Scutellarin alleviates interstitial fibrosis and cardiac dysfunction of infarct rats by inhibiting TGFβ1 expression and activation of p38-MAPK and ERK1/2. Br. J. Pharmacol. 162: 688–700, 2011. Crossref, Medline, ISIGoogle Scholar
  • Rahman, M., H. Luo, N.R. Sims, L. Bobrovskaya and X.F. Zhou . Investigation of mature BDNF and proBDNF signaling in a rat photothrombotic ischemic model. Neurochem. Res. 43: 637–649, 2018. Crossref, Medline, ISIGoogle Scholar
  • Seeburger, J.L., S. Tarras, H. Natter and J.E. Springer . Spinal cord motoneurons express p75NGFR and p145trkB mRNA in amyotrophic lateral sclerosis. Brain Res. J. 621: 111–115, 1993. Crossref, Medline, ISIGoogle Scholar
  • Shen, A.L., F. Hong, L.Y. Liu, J.M. Lin, Q.C. Zhuang, Z.F. Hong and J. Peng . Effects of Pien Tze huang on angiogenesis in vivo and in vitro. Chin. J. Integ. Med. 18: 431, 2012. Crossref, Medline, ISIGoogle Scholar
  • Shepheard, S.R., J. Wuu, M. Cardoso, L. Wiklendt, P.G. Dinning, T. Chataway, D. Schultz, M. Benatar and M.L. Rogers . Urinary p75(ECD): A prognostic, disease progression, and pharmacodynamic biomarker in ALS. Neurology 88: 1137–1143, 2017. Crossref, Medline, ISIGoogle Scholar
  • Shin, J.W., K.J. Kweon, D.K. Kim, P. Kim, T.D. Jeon, S. Maeng and N.W. Sohn . Scutellarin ameliorates learning and memory deficit via suppressing β-amyloid formation and microglial activation in rats with chronic cerebral hypoperfusion. Am. J. Chin. Med. 46: 1203–1223, 2018. Link, ISIGoogle Scholar
  • Stevens, B., N.J. Allen, L.E. Vazquez, G.R. Howell, K.S. Christopherson, N. Nouri, K.D. Micheva, A.K. Mehalow, A.D. Huberman, B. Stafford, A. Sher, A.M. Litke, J.D. Lambris, S.J. Smith, S.W. John and B.A. Barres . The classical complement cascade mediates CNS synapse elimination. Cell 131: 1164–1178, 2007. Crossref, Medline, ISIGoogle Scholar
  • Tang, H., Z.H. Shi, N.G. Li, Y.P. Tang, Q.P. Shi, Z.X. Dong, P.X. Zhang and J.A. Duan . Investigation on the interactions of scutellarin and scutellarein with bovine serum albumin using spectroscopic and molecular docking techniques. Arch. Pharm. Res. 38: 1789–1801, 2015. Crossref, Medline, ISIGoogle Scholar
  • Tang, H., Y. Tang, N. Li, Q. Shi, J. Guo, E. Shang and J.A. Duan . Neuroprotective effects of scutellarin and scutellarein on repeatedly cerebral ischemia-reperfusion in rats. Pharmacol. Biochem. Behav. 118: 51–59, 2014. Crossref, Medline, ISIGoogle Scholar
  • Vannucci, R.C. and J.M. Perlman . Interventions for perinatal hypoxic-ischemic encephalopathy. Pediatrics 100: 1004–1014, 1997. Crossref, Medline, ISIGoogle Scholar
  • Wang, W., X. Ma, J. Han, M. Zhou, H. Ren, Q. Pan, C. Zheng and Q. Zheng . Neuroprotective effect of scutellarin on ischemic cerebral injury by down-regulating the expression of angiotensin-converting enzyme and at1 receptor. PLoS One 11: e0146197, 2016. Medline, ISIGoogle Scholar
  • Wang, Y.J., D. Valadares, Y. Sun, X. Wang, J.H. Zhong, X.H. Liu, S. Majd, L. Chen, C.Y. Gao, S. Chen, Y. Lim, A. Pollard, E.A. Salegio, W.P. Gai, M. Yang and X.F. Zhou . Effects of proNGF on neuronal viability, neurite growth and amyloid-beta metabolism. Neurotox. Res. 17: 257–267, 2010. Crossref, Medline, ISIGoogle Scholar
  • Wang, Y.J., X. Wang, J.J. Lu, Q.X. Li, C.Y. Gao, X.H. Liu, Y. Sun, M. Yang, Y. Lim, G. Evin, J.H. Zhong, C. Masters and X.F. Zhou . p75NTR regulates abeta deposition by increasing abeta production but inhibiting abeta aggregation with its extracellular domain. J. Neurosci. 31: 2292–2304, 2011. Crossref, Medline, ISIGoogle Scholar
  • Wu, C.Y., M. Fang, A. Karthikeyan, Y. Yuan and E.A. Ling . Scutellarin attenuates microglia-mediated neuroinflammation and promotes astrogliosis in cerebral ischemia — a therapeutic consideration. Curr. Med. Chem. 24: 718–727, 2017. Crossref, Medline, ISIGoogle Scholar
  • Yan, J., X. Zhou, J.J. Guo, L. Mao, Y.J. Wang, J. Sun, L.X. Sun, L.Y. Zhang, X.F. Zhou and H. Liao . Nogo-66 inhibits adhesion and migration of microglia via GTPase Rho pathway in vitro. J. Neurochem. 120: 721–731, 2012. Crossref, Medline, ISIGoogle Scholar
  • Yang, D., C. Peng, X. Li, X. Fan, L. Li, M. Ming, S. Chen and W. Le . Pitx3-transfected astrocytes secrete brain-derived neurotrophic factor and glial cell line-derived neurotrophic factor and protect dopamine neurons in mesencephalon cultures. J. Neurosci. Res. 86: 3393–3400, 2008. Crossref, Medline, ISIGoogle Scholar
  • Yao, X. Q., S.S. Jiao, K. Saadipour, F. Zeng, Q.H. Wang, C. Zhu, L.L. Shen, G.H. Zeng, C.R. Liang, J. Wang, Y.H. Liu, H.Y. Hou, X. Xu, Y.P. Su, X.T. Fan, H.L. Xiao, L.F. Lue, Y.Q. Zeng, B. Giunta, J.H. Zhong, D.G. Walker, H.D. Zhou, J. Tan, X.F. Zhou and Y.J. Wang . p75NTR ectodomain is a physiological neuroprotective molecule against amyloid-beta toxicity in the brain of Alzheimer’s disease. Mol. Psychiatry 20: 1301–1310, 2015. Crossref, Medline, ISIGoogle Scholar
  • Yuan, Y., P. Rangarajan, E.M. Kan, Y. Wu, C. Wu and E.A. Ling . Scutellarin regulates the notch pathway and affects the migration and morphological transformation of activated microglia in experimentally induced cerebral ischemia in rats and in activated bv-2 microglia. J. Neuroinflam. 12: 11, 2015. Crossref, Medline, ISIGoogle Scholar
  • Zatloukal, K., C. Stumptner, A. Fuchsbichler, H. Heid, M. Schnoelzer, L. Kenner, R. Kleinert, M. Prinz, A. Aguzzi and H. Denk . P62 is a common component of cytoplasmic inclusions in protein aggregation diseases. Am. J. Pathol. 160: 255–263, 2002. Crossref, Medline, ISIGoogle Scholar
  • Zeng, F., J.J. Lu, X.F. Zhou and Y.J. Wang . Roles of p75NTR in the pathogenesis of Alzheimer’s disease: A novel therapeutic target. Biochem. Pharmacol. 82: 1500–1509, 2011. Crossref, Medline, ISIGoogle Scholar
  • Zou, J. and F.T. Crews . Inflammasome-IL-1β signaling mediates ethanol inhibition of hippocampal neurogenesis. Front. Neurosci. 6: 77, 2012. Crossref, Medline, ISIGoogle Scholar
Remember to check out the Most Cited Articles!

Check out our Chinese Medicine Titles today.
Includes titles by Nobel Winner, Tu You You and more!