World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Xanthorrhizol Suppresses Vascular Endothelial Growth Factor-Induced Angiogenesis by Modulating Akt/eNOS Signaling and the NF-κB-Dependent Expression of Cell Adhesion Molecules

    https://doi.org/10.1142/S0192415X21500348Cited by:3 (Source: Crossref)

    Angiogenesis plays a crucial role in tumor growth and metastasis. Vascular endothelial growth factor (VEGF)-stimulated endothelial cell proliferation and migration are critical steps in tumor angiogenesis. Here, we investigated the anti-angiogenic activity of xanthorrhizol, a sesquiterpenoid isolated from the Indonesian medicinal plant Curcuma xanthorrhiza. Xanthorrhizol at noncytotoxic concentrations inhibited the proliferation, migration, and formation of capillary-like tubes in VEGF-treated human umbilical vein endothelial cells (HUVECs). Xanthorrhizol inhibited the phosphorylation of Akt and endothelial nitric oxide synthase (eNOS) and the expression of vascular cell adhesion molecule (VCAM)-1 and E-selectin in VEGF-treated HUVECs. The expression and transcriptional activity of NF-κB were downregulated by xanthorrhizol in VEGF-treated HUVECs. Furthermore, xanthorrhizol significantly inhibited VEGF-induced angiogenesis in the chorioallantoic membrane of fertilized eggs and Matrigel plugs subcutaneously injected into mice. Xanthorrhizol inhibited tumor volume and tumor-derived angiogenesis in mice inoculated with breast cancer cells. The in vitro and in vivo anti-angiogenic activities of xanthorrhizol were as potent as those of curcumin, a well-known anticancer agent derived from C. longa. Taken together, xanthorrhizol inhibits VEGF-induced angiogenesis of endothelial cells by blocking the activation of the PI3K/Akt/eNOS axis and subsequent upregulation of adhesion molecules induced by the transcriptional activation of NF-κB. Xanthorrhizol is a promising anti-angiogenic agent and can serve as a beneficial agent to enhance anticancer treatments.

    References

    • Adams, R.H. and K. Alitalo . Molecular regulation of angiogenesis and lymphangiogenesis. Nat. Rev. Mol. Cell Biol. 8: 464–478, 2007. Crossref, Medline, Web of ScienceGoogle Scholar
    • Agrawal, D.K. and P.K. Mishra . Curcumin and its analogues: Potential anticancer agents. Med. Res. Rev. 30: 818–860, 2010. Crossref, Medline, Web of ScienceGoogle Scholar
    • Ai, N., C.M. Chong, W. Chen, Z. Hu, H. Su, G. Chen, Q.W. Lei Wong, and W. Ge . Ponatinib exerts anti-angiogenic effects in the zebrafish and human umbilical vein endothelial cells via blocking VEGFR signaling pathway. Oncotarget 9: 31958–31970, 2018. Crossref, MedlineGoogle Scholar
    • Carmeliet, P. and R.K. Jain . Angiogenesis in cancer and other disease. Nature 407: 249–257, 2000. Crossref, Medline, Web of ScienceGoogle Scholar
    • Cheah, Y.H., H.L. Azimahtol and N.R. Abdullah . Xanthorrhizol exhibits antiproliferative activity on MCF-7 breast cancer cells via apoptosis induction. Anticancer Res. 26: 4527–4534, 2006. Medline, Web of ScienceGoogle Scholar
    • Cheah, Y.H., F.J. Nordin, T.T. Tee, H.L. Azimahtol, N.R. Abdullah and Z. Ismail . Antiproliferative property and apoptotic effect of xanthorrhizol on MDA-MB-231 breast cancer cells. Anticancer Res. 28: 3677–3689, 2008. Medline, Web of ScienceGoogle Scholar
    • Choi, M.A., S.H. Kim, W.Y. Chung, J.K. Hwang and K.K. Park . Xanthorrhizol, a natural sesquiterpenoid from Curcuma xanthorrhiza, has an anti-metastatic potential in experimental mouse lung metastasis model. Biochem. Biophys. Res. Commun. 326: 210–217, 2005. Crossref, Medline, Web of ScienceGoogle Scholar
    • Chung, W.Y., J.H. Park, M.J. Kim, H.O. Kim, J.K. Hwang, S.K. Lee and K.K. Park . Xanthorrhizol inhibits 12-O-tetradecanoylphorbol-13-acetate-induced acute inflammation and two-stage mouse skin carcinogenesis by blocking the expression of ornithine decarboxylase, cyclooxygenase-2 and inducible nitric oxide synthase through mitogen-activated protein kinases and/or the nuclear factor-kappa B. Carcinogenesis 28: 1224–1231, 2007. Crossref, Medline, Web of ScienceGoogle Scholar
    • Claesson-Welsh, L. and M. Welsh . VEGFA and tumour angiogenesis. J. Intern. Med. 273: 114–127, 2013. Crossref, Medline, Web of ScienceGoogle Scholar
    • Devaraj, S., A.S. Esfahani, S. Ismail, S. Ramanathan and M.F. Yam . Evaluation of the antinociceptive activity and acute oral toxicity of standardized ethanolic extract of the rhizome of Curcuma xanthorrhiza Roxb. Molecules 15: 2925–2934, 2010. Crossref, Medline, Web of ScienceGoogle Scholar
    • Dvorak, H.F., L.F. Brown, M. Detmar and A.M. Dvorak . Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am. J. Pathol. 146: 1029–1039, 1995. Medline, Web of ScienceGoogle Scholar
    • Elice, F. and F. Rodeghiero . Side effects of anti-angiogenic drugs. Thromb. Res. 129: S50–S53, 2012. Crossref, Medline, Web of ScienceGoogle Scholar
    • Ferrara, N. , Role of vascular endothelial growth factor in regulation of physiological angiogenesis. Am. J. Physiol. Cell Physiol. 280: C1358–C1366, 2001. Crossref, Medline, Web of ScienceGoogle Scholar
    • Folkman, J. , Angiogenesis in cancer, vascular, rheumatoid and other disease. Nat. Med. 1: 27–31, 1995. Crossref, Medline, Web of ScienceGoogle Scholar
    • Fontana, F., M. Raimondi, M. Marzagalli, A. Di Domizio and P. Limonta . Natural compounds in prostate cancer prevention and treatment: Mechanisms of action and molecular targets. Cells 9: 460, 2020. Crossref, Web of ScienceGoogle Scholar
    • Francavilla, C., L. Maddaluno and U. Cavallaro . The functional role of cell adhesion molecules in tumor angiogenesis. Semin. Cancer Biol. 19: 298–309, 2009. Crossref, Medline, Web of ScienceGoogle Scholar
    • Handayani, T., S. Sakinah, M. Nallappan and A.H. Pihie . Regulation of p53-, Bcl-2- and caspase-dependent signaling pathway in xanthorrhizol-induced apoptosis of HepG2 hepatoma cells. Anticancer Res. 27: 965–971, 2007. Medline, Web of ScienceGoogle Scholar
    • Hicklin, D.J. and L.M. Ellis . Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23(5): 1011–1027, 2005. Crossref, Medline, Web of ScienceGoogle Scholar
    • Hoseinkhani, Z., F. Norooznezhad, M. Rastegari-Pouyani and K. Mansouri . Medicinal plants extracts with antiangiogenic activity: Where is the link? Adv. Pharm. Bull. 10: 370–378, 2020. Crossref, Medline, Web of ScienceGoogle Scholar
    • Hwang, J.K., J.S. Shim, N.I. Baek and Y.R. Pyun . Xanthorrhizol: A potential antibacterial agent from Curcuma xanthorrhiza against Streptococcus mutans. Planta Med. 66: 196–197, 2000. Crossref, Medline, Web of ScienceGoogle Scholar
    • Ismail, N., A.H. Pihie and M. Nallapan . Xanthorrhizol induces apoptosis via the up-regulation of bax and p53 in HeLa cells. Anticancer Res. 25: 2221–2227, 2005. Medline, Web of ScienceGoogle Scholar
    • Jaffe, E.A., R.L. Nachman, C.G. Becker and C.R. Minick . Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J. Clin. Invest. 52: 2745–2756, 1973. Crossref, Medline, Web of ScienceGoogle Scholar
    • Kang, Y.J., K.K. Park, W.Y. Chung, J.K. Hwang and S.K. Lee . Xanthorrhizol, a natural sesquiterpenoid, induces apoptosis and growth arrest in HCT116 human colon cancer cells. J. Pharmacol. Sci. 111: 276–284, 2009. Crossref, Medline, Web of ScienceGoogle Scholar
    • Kang, Z., H. Zhu, W. Jiang and S. Zhang . Protocatechuic acid induces angiogenesis through PI3K-Akt-eNOS-VEGF signalling pathway. Basic Clin. Pharmacol. Toxicol. 113: 221–227, 2013. Crossref, Medline, Web of ScienceGoogle Scholar
    • Karar, J. and A. Maity . PI3K/AKT/mTOR pathway in angiogenesis. Front. Mol. Neurosci. 4: 51, 2011. Crossref, Medline, Web of ScienceGoogle Scholar
    • Kim, I., S.O. Moon, S.H. Kim, H.J. Kim, Y.S. Koh and G.Y. Koh . Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-κB activation in endothelial cells. J. Biol. Chem. 276: 7614–7620, 2001. Crossref, Medline, Web of ScienceGoogle Scholar
    • Kim, J.Y., J.M. An, W.Y. Chung, K.K. Park, J.K. Hwang, D.S. Kim, S.R. Seo and J.T. Seo . Xanthorrhizol induces apoptosis through ROS-mediated MAPK activation in human oral squamous cell carcinoma cells and inhibits DMBA-induced oral carcinogenesis in hamsters. Phytother. Res. 27: 493–498, 2013. Crossref, Medline, Web of ScienceGoogle Scholar
    • Kim, B.R., S.H. Seo, M.S. Park, S.H. Lee, Y. Kwon and S.B. Rho . sMEK1 inhibits endothelial cell proliferation by attenuating VEGFR-2-dependent-Akt/eNOS/HIF-1alpha signaling pathways. Oncotarget 6: 31830–31843, 2015. Crossref, MedlineGoogle Scholar
    • Olivieri, D. and A. Chetta . Therapeutic perspectives in vascular remodeling in asthma and chronic obstructive pulmonary disease. Chem. Immunol. Allergy 99: 216–225, 2014. Crossref, MedlineGoogle Scholar
    • Oon, S.F., M. Nallappan, T.T. Tee, S. Shohaimi, N.K. Kassim, M.S. Sa’ariwijaya and Y.H. Cheah . Xanthorrhizol: A review of its pharmacological activities and anticancer properties. Cancer Cell Int. 15: 100, 2015. Crossref, Medline, Web of ScienceGoogle Scholar
    • Park, J., H.J. Kim, K.R. Kim, S.K. Lee, H. Kim, K.K. Park and W.Y. Chung . Loss of RUNX3 expression inhibits bone invasion of oral squamous cell carcinoma. Oncotarget 8: 9079–9092, 2017. Crossref, MedlineGoogle Scholar
    • Shakeri, A., N. Ward, Y. Panahi and A. Sahebkar . Anti-angiogenic activity of curcumin in cancer therapy: A narrative review. Curr. Vasc. Pharmacol. 17: 262–269, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Shukla, K., H. Sonowal, A. Saxena and K.V. Ramana . Didymin by suppressing NF-κB activation prevents VEGF-induced angiogenesis in vitro and in vivo. Vascul. Pharmacol. 115: 18–25, 2019. Crossref, Medline, Web of ScienceGoogle Scholar
    • Son, S.H., M.J. Kim, W.Y. Chung, J.A. Son, Y.S. Kim, Y.C. Kim, S.S. Kang, S.K. Lee and K.K. Park . Decursin and decursinol inhibit VEGF-induced angiogenesis by blocking the activation of extracellular signal-regulated kinase and c-Jun N-terminal kinase. Cancer Lett. 280: 86–92, 2009. Crossref, Medline, Web of ScienceGoogle Scholar
    • Tee, T.T., Y.H. Cheah, N. Meenakshii, M.Y.M. Sharom and L.P.A. Hawariah . Xanthorrhizol induced DNA fragmentation in HepG2 cells involving Bcl-2 family proteins. Biochem. Biophys. Res. Commun. 420: 834–838, 2012. Crossref, Medline, Web of ScienceGoogle Scholar
    • Xu, S., Z.X. Xu, S. Yan, J. Le, H. Chen, L. Ming, S.G. Xu and T. Lin . Curcumin suppresses intestinal microvascular endothelial cells invasion and angiogenesis induced by activated platelets. Exp. Ther. Med. 18: 1099–1106, 2019. Medline, Web of ScienceGoogle Scholar
    • Yamazaki M., Y. Maebayashi, N. Iwase, T. Kaneko . Studies on pharmacologically active principles from Indonesian crude drugs. II. Hypothermic principle from Curcuma xanthorrhiza Roxb. Chem. Pharm. Bull. (Tokyo) 36: 2075–2078, 1988. Crossref, Medline, Web of ScienceGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Chinese Medicine Titles today.
    Includes titles by Nobel Winner, Tu You You and more!