World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Cordycepin Attenuates Palmitic Acid-Induced Inflammation and Apoptosis of Vascular Endothelial Cells through Mediating PI3K/Akt/eNOS Signaling Pathway

    https://doi.org/10.1142/S0192415X21500804Cited by:9 (Source: Crossref)

    A well-known medicinal mushroom in the field of traditional Chinese medicine, Cordyceps sinensis, is a rare natural-occurring entomopathogenic fungus, and it typically grows at high altitudes on the plateau of the Himalayan. Previous studies indicated that cordycepin, the main bioactive chemical of Cordyceps sinensis, has very potent anticancer, anti-oxidant and anti-inflammatory activities. However, its protective effects against atherosclerotic changes in vascular endothelial cells have not been fully elucidated. In this study, we showed that pretreatment with cordycepin significantly attenuated palmitic acid (PA)-induced cytotoxicity, reactive oxygen species (ROS) generation, and inflammatory responses. We found that PA decreased phosphorylation of Akt, eNOS, and bioavailability of nitric oxide (NO), which in turn activated NF-κB and the downstream inflammatory responses. All these detrimental events were markedly blocked by pretreatment with cordycepin. Moreover, cordycepin ameliorated destabilization of mitochondrial permeability, cytosolic calcium rises, and apoptotic features caused by PA. In addition, all these anti-inflammatory and anti-apoptosis effects of cordycepin were found to be inhibited by the PI3K and eNOS inhibitor, suggesting that its anti-atherosclerotic effects may partially be mediated by the PI3K/Akt/eNOS signaling pathway.

    References

    • Artwohl, M., M. Roden, W. Waldhäusl, A. Freudenthaler and S.M. Baumgartner-Parzer . Free fatty acids trigger apoptosis and inhibit cell cycle progression in human vascular endothelial cells. FASEB J. 18: 146–148, 2004. Crossref, Medline, ISIGoogle Scholar
    • Batumalaie, K., M.A. Amin, D.D. Murugan, M.Z. Sattar and N.A. Abdullah . Withaferin A protects against palmitic acid-induced endothelial insulin resistance and dysfunction through suppression of oxidative stress and inflammation. Sci. Rep. 6: 27236, 2016. Crossref, Medline, ISIGoogle Scholar
    • Chandra, K., V. Jain, M. Azhar, W. Khan, O. Alam, S. Ahmad and S.K. Jain . Effect of augmented glycation in mobilization of plasma free fatty acids in type 2 diabetes mellitus. Diabetes Metab. Syndr. 14: 1385–1389, 2020. Crossref, Medline, ISIGoogle Scholar
    • Chen, P., H. Liu, H. Xiang, J. Zhou, Z. Zeng, R. Chen, S. Zhao, J. Xiao, Z. Shu, S. Chen and H. Lu . Palmitic acid-induced autophagy increases reactive oxygen species via the Ca(2+)/PKCα/NOX4 pathway and impairs endothelial function in human umbilical vein endothelial cells. Exp. Ther. Med. 17: 2425–2432, 2019. Medline, ISIGoogle Scholar
    • Chen, X., L. Liu, G. Palacios, J. Gao, N. Zhang, G. Li, J. Lu, T. Song, Y. Zhang and H. Lv . Plasma metabolomics reveals biomarkers of the atherosclerosis. J. Sep. Sci. 33: 2776–2783, 2010. Crossref, Medline, ISIGoogle Scholar
    • Choi, S., M.H. Lim, K.M. Kim, B.H. Jeon, W.O. Song and T.W. Kim . Cordycepin-induced apoptosis and autophagy in breast cancer cells are independent of the estrogen receptor. Toxicol. Appl. Pharmacol. 257: 165–173, 2011. Crossref, Medline, ISIGoogle Scholar
    • Choi, Y.H., G.Y. Kim and H.H. Lee . Anti-inflammatory effects of cordycepin in lipopolysaccharide-stimulated RAW 264.7 macrophages through toll-like receptor 4-mediated suppression of mitogen-activated protein kinases and NF-κB signaling pathways. Drug Des. Devel. Ther. 8: 1941–1953, 2014. Crossref, Medline, ISIGoogle Scholar
    • Chu, H.L., J.C. Chien and P.D. Duh . Protective effect of cordyceps militaris against high glucose-induced oxidative stress in human umbilical vein endothelial cells. Food Chem. 129: 871–876, 2011. Crossref, Medline, ISIGoogle Scholar
    • de Souza, C.O., C.A. Valenzuela, E.J. Baker, E.A. Miles, J.C. Rosa Neto and P.C. Calder . Palmitoleic acid has stronger anti-inflammatory potential in human endothelial cells compared to oleic and palmitic acids. Mol. Nutr. Food Res. 62: e1800322, 2018. Crossref, Medline, ISIGoogle Scholar
    • Ding, A.H., C.F. Nathan and D.J. Stuehr . Release of reactive nitrogen intermediates and reactive oxygen intermediates from mouse peritoneal macrophages. Comparison of activating cytokines and evidence for independent production. J. Immunol. 141: 2407–2412, 1988. Crossref, Medline, ISIGoogle Scholar
    • Dubois-Deruy, E., V. Peugnet, A. Turkieh and F. Pinet . Oxidative stress in cardiovascular diseases. Antioxidants 9: 864, 2020. Crossref, ISIGoogle Scholar
    • Fratantonio, D., A. Speciale, D. Ferrari, M. Cristani, A. Saija and F. Cimino . Palmitate-induced endothelial dysfunction is attenuated by cyanidin-3-O-glucoside through modulation of Nrf2/Bach1 and NF-κB pathways. Toxicol. Lett. 239: 152–160, 2015. Crossref, Medline, ISIGoogle Scholar
    • Gan, Y.R., L. Wei, Y.Z. Wang, Z.K. Kou, T.X. Liang, G.W. Ding, Y.H. Ding and D.X. Xie . Dickkopf-1/cysteine-rich angiogenic inducer 61 axis mediates palmitic acid-induced inflammation and apoptosis of vascular endothelial cells. Mol. Med. Rep. 23: 122, 2021. Crossref, Medline, ISIGoogle Scholar
    • Gencer, S., B.R. Evans, E.P.C. van der Vorst, Y. Döring and C. Weber . Inflammatory chemokines in atherosclerosis. Cells 10: 226, 2021. Crossref, Medline, ISIGoogle Scholar
    • Gong, Y., G. Li, J. Tao, N.N. Wu, M.R. Kandadi, Y. Bi, S. Wang, Z. Pei and J. Ren . Double knockout of Akt2 and AMPK accentuates high fat diet-induced cardiac anomalies through a cGAS-STING-mediated mechanism. Biochim. Biophys. Acta Mol. Basis Dis. 1866: 165855, 2020. Crossref, Medline, ISIGoogle Scholar
    • Jeong, S.O., Y. Son, J.H. Lee, Y.K. Cheong, S.H. Park, H.T. Chung and H.O. Pae . Resveratrol analog piceatannol restores the palmitic acid-induced impairment of insulin signaling and production of endothelial nitric oxide via activation of anti-inflammatory and antioxidative heme oxygenase-1 in human endothelial cells. Mol. Med. Rep. 12: 937–944, 2015. Crossref, Medline, ISIGoogle Scholar
    • Krogmann, A., K. Staiger, C. Haas, N. Gommer, A. Peter, M. Heni, F. Machicao, H. U. Häring and H. Staiger . Inflammatory response of human coronary artery endothelial cells to saturated long-chain fatty acids. Microvasc. Res. 81: 52–59, 2011. Crossref, Medline, ISIGoogle Scholar
    • Lee, C.H., S.D. Lee, H.C. Ou, S.C. Lai and Y.J. Cheng . Eicosapentaenoic acid protects against palmitic acid-induced endothelial dysfunction via activation of the AMPK/eNOS pathway. Int. J. Mol. Sci. 15: 10334–10349, 2014. Crossref, Medline, ISIGoogle Scholar
    • Lee, J.B., M. Radhi, E. Cipolla, R.D. Gandhi, S. Sarmad, A. Zgair, T.H. Kim, W. Feng, C. Qin, C. Adrower, C.A. Ortori, D.A. Barrett, L. Kagan, P.M. Fischer, C.H. de Moor and P. Gershkovich . A novel nucleoside rescue metabolic pathway may be responsible for therapeutic effect of orally administered cordycepin. Sci. Rep. 9: 15760, 2019. Crossref, Medline, ISIGoogle Scholar
    • Li, W., L. Ji, J. Tian, W. Tang, X. Shan, P. Zhao, H. Chen, C. Zhang, M. Xu, R. Lu and W. Guo . Ophiopogonin D alleviates diabetic myocardial injuries by regulating mitochondrial dynamics. J. Ethnopharmacol. 271: 113853, 2021. Crossref, Medline, ISIGoogle Scholar
    • Littlewood, T.D. and M.R. Bennett . Apoptotic cell death in atherosclerosis. Curr. Opin. Lipidol. 14: 469–475, 2003. Crossref, Medline, ISIGoogle Scholar
    • Liu, N., Y. Li, W. Nan, W. Zhou, J. Huang, R. Li, L. Zhou and R. Hu . Interaction of TPPP3 with VDAC1 promotes endothelial injury through activation of reactive oxygen species. Oxid. Med. Cell. Longev. 2020: 5950195, 2020. Crossref, Medline, ISIGoogle Scholar
    • Lu, Y., Y. Chen, R. Li, Q. Liu, N. Wang, Y. Zhang, B. Li and Z. Fang . Protective effects of Danzhi jiangtang capsule on vascular endothelial damages induced by high-fat diet and palmitic acid. Biomed. Pharmacother. 107: 1631–1640, 2018. Crossref, Medline, ISIGoogle Scholar
    • Marshall, H.E., K. Merchant and J.S. Stamler . Nitrosation and oxidation in the regulation of gene expression. FASEB J. 14: 1889–1900, 2000. Crossref, Medline, ISIGoogle Scholar
    • Morris, G., B.K. Puri, L. Olive, A. Carvalho, M. Berk, K. Walder, L.T. Gustad and M. Maes . Endothelial dysfunction in neuroprogressive disorders-causes and suggested treatments. BMC Med. 18: 305, 2020. Crossref, Medline, ISIGoogle Scholar
    • Ou, H.C., W.J. Lee, C.M. Wu, J.F. Chen and W.H. Sheu . Aspirin prevents resistin-induced endothelial dysfunction by modulating AMPK, ROS, and Akt/eNOS signaling. J. Vasc. Surg. 55: 1104–1115, 2012. Crossref, Medline, ISIGoogle Scholar
    • Pai, P.Y., W.C. Chou, S.H. Chan, S.Y. Wu, H.I. Chen, C.W. Li, P.L. Hsieh, P.M. Chu, Y.A. Chen, H.C. Ou and K.L. Tsai . Epigallocatechin gallate reduces homocysteine-caused oxidative damages through modulation SIRT1/AMPK pathway in endothelial cells. Am. J. Chin. Med. 49: 113–129, 2021. Link, ISIGoogle Scholar
    • Pellegrini, M., F. Finetti, V. Petronilli, C. Ulivieri, F. Giusti, P. Lupetti, M. Giorgio, P.G. Pelicci, P. Bernardi and C.T. Baldari . p66SHC promotes T cell apoptosis by inducing mitochondrial dysfunction and impaired Ca2+ homeostasis. Cell Death Differ. 14: 338–347, 2007. Crossref, Medline, ISIGoogle Scholar
    • Shashidhar, M.G., P. Giridhar, K. Udaya Sankar and B. Manohar . Bioactive principles from Cordyceps sinensis: A potent food supplement - A review. J. Funct. Foods 5: 1013–1030, 2013. Crossref, Medline, ISIGoogle Scholar
    • Singh, M., R. Tulsawani, P. Koganti, A. Chauhan, M. Manickam and K. Misra . Cordyceps sinensis increases hypoxia tolerance by inducing heme oxygenase-1 and metallothionein via Nrf2 activation in human lung epithelial cells. Biomed. Res. Int. 2013: 569206, 2013. Crossref, Medline, ISIGoogle Scholar
    • Takakura, K., S. Ito, J. Sonoda, K. Tabata, M. Shiozaki, K. Nagai, M. Shibata, M. Koike, Y. Uchiyama and T. Gotow . Cordyceps militaris improves the survival of Dahl salt-sensitive hypertensive rats possibly via influences of mitochondria and autophagy functions. Heliyon 3: e00462, 2017. Crossref, Medline, ISIGoogle Scholar
    • Tuli, H.S., S.S. Sandhu and A.K. Sharma . Pharmacological and therapeutic potential of Cordyceps with special reference to Cordycepin. 3 Biotech. 4: 1–12, 2014. Crossref, MedlineGoogle Scholar
    • Tuli, H.S., A.K. Sharma, S.S. Sandhu and D. Kashyap . Cordycepin: A bioactive metabolite with therapeutic potential. Life Sci. 93: 863–869, 2013. Crossref, Medline, ISIGoogle Scholar
    • Wang, H.B., M.X. Duan, M. Xu, S.H. Huang, J. Yang, J. Yang, L.B. Liu, R. Huang, C.X. Wan, Z.G. Ma, Q.Q. Wu and Q.Z. Tang . Cordycepin ameliorates cardiac hypertrophy via activating the AMPKalpha pathway. J. Cell Mol. Med. 23: 5715–5727, 2019. Crossref, Medline, ISIGoogle Scholar
    • Wang, J., Q. Zhang, S. Qin, Y. Luo, M. Yu, J. Ding and D. Lu . Palmitic acid decreases phosphorylation of eNOS Ser1177 by activating protein phosphatase 2C (PP2C) of human umbilical vein endothelial cells]. Xi Bao Yu Fen Zi Mian Yi Xue Za Zhi 36: 520–526, 2020. MedlineGoogle Scholar
    • Wang, M.J., X.Y. Peng, Z.Q. Lian and H.B. Zhu . The cordycepin derivative IMM-H007 improves endothelial dysfunction by suppressing vascular inflammation and promoting AMPK-dependent eNOS activation in high-fat diet-fed ApoE knockout mice. Eur. J. Pharmacol. 852: 167–178, 2019. Crossref, Medline, ISIGoogle Scholar
    • Wu, D., J. Liu, X. Pang, S. Wang, J. Zhao, X. Zhang and L. Feng . Palmitic acid exerts pro-inflammatory effects on vascular smooth muscle cells by inducing the expression of C-reactive protein, inducible nitric oxide synthase and tumor necrosis factor-α. Int. J. Mol. Med. 34: 1706–1712, 2014a. Crossref, Medline, ISIGoogle Scholar
    • Wu, C., Y. Guo, Y. Su, X. Zhang, H. Luan, X. Zhang, H. Zhu, H. He, X. Wang, G. Sun, X. Sun, P. Guo and P. Zhu . Cordycepin activates AMP-activated protein kinase (AMPK) via interaction with the γ1 subunit. J. Cell. Mol. Med. 18: 293–304, 2014b. Crossref, Medline, ISIGoogle Scholar
    • Wu, J., M. Kong, Y. Lou, L. Li, C. Yang, H. Xu, Y. Cui, H. Hao and Z. Liu . Simultaneous activation of Erk1/2 and Akt signaling is critical for formononetin-induced promotion of endothelial function. Front. Pharmacol. 11: 608518, 2020. Crossref, Medline, ISIGoogle Scholar
    • Yli-Jama, P., H.E. Meyer, J. Ringstad and J.I. Pedersen . Serum free fatty acid pattern and risk of myocardial infarction: A case-control study. J. Intern. Med. 251: 19–28, 2002. Crossref, Medline, ISIGoogle Scholar
    • Yu, T., E. Zheng, Y. Li, Y. Li, J. Xia, Q. Ding, Z. Hou, X.Z. Ruan, L. Zhao and Y. Chen . Src-mediated Tyr353 phosphorylation of IP3R1 promotes its stability and causes apoptosis in palmitic acid-treated hepatocytes. Exp. Cell Res. 399: 112438, 2021. Crossref, Medline, ISIGoogle Scholar
    • Zhang, J.L., Y. Xu and J. Shen . Cordycepin inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor (TNF)-α production via activating amp-activated protein kinase (AMPK) signaling. Int. J. Mol. Sci. 15: 12119–12134, 2014. Crossref, Medline, ISIGoogle Scholar
    • Zhao, Y., W. Rao, Y. Wan, X. Yang, G. Wang, J. Deng, M. Dai and Q. Liu . Overexpression of microRNA155 alleviates palmitate-induced vascular endothelial cell injury in human umbilical vein endothelial cells by negatively regulating the Wnt signaling pathway. Mol. Med. Rep. 20: 3527–3534, 2019. Medline, ISIGoogle Scholar
    • Zoratti, M. and I. Szabò . The mitochondrial permeability transition. Biochim. Biophys. Acta 1241: 139–176, 1995. Crossref, Medline, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Chinese Medicine Titles today.
    Includes titles by Nobel Winner, Tu You You and more!