World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Total Flavonoids of Astragalus Inhibit Activated CD4+ T Cells and Regulate Differentiation of Th17/Th1/Treg Cells in Experimental Autoimmune Encephalomyelitis Mice by JAK/STAT and NFκB Signaling Pathways

    https://doi.org/10.1142/S0192415X23500568Cited by:3 (Source: Crossref)

    Multiple sclerosis (MS) is a neuroinflammatory disease characterized by CD4+ T cell-mediated immune cell infiltration and demyelination in the central nervous system (CNS). The subtypes of CD4+ T cells are T helper cells 1 (Th1), Th2, Th17, and regulatory T cells (Treg), while three other types of cells besides Th2 play a key role in MS and its classic animal model, experimental autoimmune encephalomyelitis (EAE). Tregs are responsible for immunosuppression, while pathogenic Th1 and Th17 cells cause autoimmune-associated demyelination. Therefore, suppressing Th1 and Th17 cell differentiation and increasing the percentage of Treg cells may contribute to the treatment of EAE/MS. Astragali Radix (AR) is a representative medicine with immunoregulatory, anti-inflammatory, antitumor, and neuroprotective effects.The active ingredients in AR include astragalus flavones, polysaccharides, and saponins. In this study, it was found that the total flavonoids of Astragus (TFA) could effectively treat EAE in mice by ameliorating EAE motor disorders, reducing inflammatory damage and demyelination, inhibiting the proportion of Th17 and Th1 cells, and promoting Tregs differentiation by regulating the JAK/STAT and NFκB signaling pathways. This novel finding may increase the possibility of using AR or TFA as a drug with immunomodulatory effects for the treatment of autoimmune diseases.

    References

    • Abdolahi, M., P. Yavari, N.M. Honarvar, S. Bitarafan, M. Mahmoudi and A.A. Saboor-Yaraghi . Molecular mechanisms of the action of vitamin A in Th17/Treg axis in multiple sclerosis. J. Mol. Neurosci. 57: 605–613, 2015. Crossref, Medline, ISIGoogle Scholar
    • Baecher-Allan, C., B.J. Kaskow and H.L. Weiner . Multiple sclerosis: Mechanisms and immunotherapy. Neuron 97: 742–768, 2018. Crossref, Medline, ISIGoogle Scholar
    • Balakrishnan, B., Q. Liang, K. Fenix, B. Tamang, E. Hauben, L. Ma and W. Zhang . Combining the anticancer and immunomodulatory effects of Astragalus and Shiitake as an integrated therapeutic approach. Nutrients 13: 2564, 2021. Crossref, Medline, ISIGoogle Scholar
    • Chen, Z., L. Liu, C. Gao, W. Chen, C.T. Vong, P. Yao, Y. Yang, X. Li, X. Tang, S. Wang and Y. Wang . Astragali Radix (Huangqi): A promising edible immunomodulatory herbal medicine. J. Ethnopharmacol. 258: 112895, 2020. Crossref, Medline, ISIGoogle Scholar
    • Fasching, P., M. Stradner, W. Graninger, C. Dejaco and J. Fessler . Therapeutic potential of targeting the Th17/Treg axis in autoimmune disorders. Molecules 22: 134, 2017. Crossref, Medline, ISIGoogle Scholar
    • Fletcher, J.M., S.J. Lalor, C.M. Sweeney, N. Tubridy and K.H. Mills . T cells in multiple sclerosis and experimental autoimmune encephalomyelitis. Clin. Exp. Immunol. 162: 1–11, 2010. Crossref, Medline, ISIGoogle Scholar
    • Fu, J., Z. Wang, L. Huang, S. Zheng, D. Wang, S. Chen, H. Zhang and S. Yang . Review of the botanical characteristics, phytochemistry, and pharmacology of Astragalus membranaceus (Huangqi). Phytother. Res. 28: 1275–1283, 2014. Crossref, Medline, ISIGoogle Scholar
    • Glatigny, S. and Bettelli, E. Experimental autoimmune encephalomyelitis (EAE) as animal models of multiple sclerosis (MS). Cold Spring Harb. Perspect. Med. 8: a028977, 2018. Crossref, Medline, ISIGoogle Scholar
    • Gong, A.G.W., R. Duan, H.Y. Wang, X.P. Kong, T.T.X. Dong, K.W.K. Tsim and K. Chan . Evaluation of the pharmaceutical properties and value of Astragali Radix. Medicines (Basel) 5: 46, 2018. Crossref, MedlineGoogle Scholar
    • Han, X.Y., Z.Y. Chen, J.F. Yuan, G.R. Wang, X. Han, H. Wu, H.L. Shi, G.X. Chou, L. Yang and X.J. Wu . Artemisia annua water extract attenuates DNCB-induced atopic dermatitis by restraining Th2 cell mediated inflammatory responses in BALB/c mice. J. Ethnopharmacol. 291: 115160, 2022. Crossref, Medline, ISIGoogle Scholar
    • Hou, H., R. Cao, M. Quan, Y. Sun, H. Sun, J. Zhang, B. Li, L. Guo and X. Song . Rapamycin and fingolimod modulate Treg/Th17 cells in experimental autoimmune encephalomyelitis by regulating the Akt-mTOR and MAPK/ERK pathways. J. Neuroimmunol. 324: 26–34, 2018. Crossref, Medline, ISIGoogle Scholar
    • Kataoka, H., K. Sugahara, K. Shimano, K. Teshima, M. Koyama, A. Fukunari and K. Chiba . FTY720, sphingosine 1-phosphate receptor modulator, ameliorates experimental autoimmune encephalomyelitis by inhibition of T cell infiltration. Cell Mol. Immunol. 2: 439–448, 2005. Medline, ISIGoogle Scholar
    • Kouakou, K., I.A. Schepetkin, S. Jun, L.N. Kirpotina, A. Yapi, D.S. Khramova, D.W. Pascual, Y.S. Ovodov, M.A. Jutila and M.T. Quinn . Immunomodulatory activity of polysaccharides isolated from Clerodendrum splendens: Beneficial effects in experimental autoimmune encephalomyelitis. BMC Complement. Altern. Med. 13: 149, 2013. Crossref, Medline, ISIGoogle Scholar
    • Kumar, N., N. Sharma and S. Mehan . Connection between JAK/STAT and PPARγ signaling during the progression of multiple sclerosis: Insights into the modulation of T-cells and immune responses in the brain. Curr. Mol. Pharmacol. 14: 823–837, 2021. Crossref, Medline, ISIGoogle Scholar
    • Lee, G.R. The balance of Th17 versus Treg cells in autoimmunity. Int. J. Mol. Sci. 19: 730, 2018. Crossref, Medline, ISIGoogle Scholar
    • Lee, J.K., G.T. Kannarkat, J. Chung, H. Joon Lee, K.L. Graham and M.G. Tansey . RGS10 deficiency ameliorates the severity of disease in experimental autoimmune encephalomyelitis. J. Neuroinflamm. 13: 24, 2016. Crossref, Medline, ISIGoogle Scholar
    • Legroux, L. and Arbour, N. Multiple sclerosis and T lymphocytes : An entangled story. J. Neuroimmune. Pharmacol. 10: 528–546, 2015. Crossref, Medline, ISIGoogle Scholar
    • Lei, D., L. Liu, S. Xie, H. Ji, Y. Guo, T. Ma and C. Han . Dexmedetomidine directs T helper cells toward Th1 cell differentiation via the STAT1-T-bet pathway. Biomed. Res. Int. 2021: 3725316, 2021. Crossref, Medline, ISIGoogle Scholar
    • Liu, X., J. Ma, G. Ding, Q. Gong, Y. Wang, H. Yu and X. Cheng . Microglia polarization from M1 toward M2 phenotype is promoted by Astragalus polysaccharides mediated through inhibition of miR-155 in experimental autoimmune encephalomyelitis. Oxid. Med. Cell Longev. 2021: 5753452, 2021. Crossref, Medline, ISIGoogle Scholar
    • McFarland, H.F. and Martin, R. Multiple sclerosis: A complicated picture of autoimmunity. Nat. Immunol. 8: 913–919, 2007. Crossref, Medline, ISIGoogle Scholar
    • Oh, H. and S. Ghosh . NF-κB: Roles and regulation in different CD4+ T-cell subsets. Immunol. Rev. 252: 41–51, 2013. Crossref, Medline, ISIGoogle Scholar
    • Pentón-Rol, G., G. Martínez-Sánchez, M. Cervantes-Llanos, N. Lagumersindez-Denis, E.F. Acosta-Medina, V. Falcón-Cama, R. Alonso-Ramírez, C. Valenzuela-Silva, E. Rodríguez-Jiménez, A. Llópiz-Arzuaga, J. Marín-Prida, P.A. López-Saura, G.E. Guillén-Nieto and E. Pentón-Arias . C-Phycocyanin ameliorates experimental autoimmune encephalomyelitis and induces regulatory T cells. Int. Immunopharmacol. 11: 29–38, 2011. Crossref, Medline, ISIGoogle Scholar
    • Rahimi, A., M. Faizi, F. Talebi, F. Noorbakhsh, F. Kahrizi and N. Naderi . Interaction between the protective effects of cannabidiol and palmitoylethanolamide in experimental model of multiple sclerosis in C57BL/6 mice. Neuroscience 290: 279–287, 2015. Crossref, Medline, ISIGoogle Scholar
    • Samuel, A.O., B.T. Huang, Y. Chen, F.X. Guo, D.D. Yang and J.Q. Jin . Antioxidant and antibacterial insights into the leaves, leaf tea and medicinal roots from Astragalus membranaceus (Fisch.) Bge. Sci. Rep. 11: 19625, 2021. Crossref, Medline, ISIGoogle Scholar
    • Stephenson, J., E. Nutma, P. van der Valk and S. Amor . Inflammation in CNS neurodegenerative diseases. Immunology 154: 204–219, 2018. Crossref, Medline, ISIGoogle Scholar
    • Sun, Y., Y. Jing, M. Huang, J. Ma, X. Peng, J. Wang, G. Li and X. Cheng . The PD-1/PD-Ls pathway is up-regulated during the suppression of experimental autoimmune encephalomyelitis treated by Astragalus polysaccharides. J. Neuroimmunol. 332: 78–90, 2019. Crossref, Medline, ISIGoogle Scholar
    • Wang, N., H. Yi, L. Fang, J. Jin, Q. Ma, Y. Shen, J. Li, S. Liang, J. Xiong, Z. Li, H. Zeng, F. Jiang, B. Jin and L. Chen . CD226 attenuates Treg proliferation via Akt and Erk signaling in an EAE model. Front. Immunol. 11: 1883, 2020. Crossref, Medline, ISIGoogle Scholar
    • Xia, P., X. Gong, L. Xiao, Y. Wang, T. Zhang, Q. Liao, X. Mo, X. Qiu and J. Huang . CCDC134 ameliorated experimental autoimmune encephalomyelitis by suppressing Th1 and Th17 cells. Brain Behav. Immun. 71: 158–168, 2018. Crossref, Medline, ISIGoogle Scholar
    • Yan, J. and Greer, J.M. NF-kappa B, a potential therapeutic target for the treatment of multiple sclerosis. CNS Neurol. Disord.-Dr. 7: 536–557, 2008. Crossref, Medline, ISIGoogle Scholar
    • Yang, L., X.Y. Han, F.P. Xing, H. Wu, H.L. Shi, F. Huang, Q. Xu and X.J. Wu . Total flavonoids of astragalus attenuates experimental autoimmune encephalomyelitis by suppressing the activation and inflammatory responses of microglia via JNK/AKT/NFκB signaling pathway. Phytomedicine 80: 153385, 2021. Crossref, Medline, ISIGoogle Scholar
    • Yang, L., X.Y. Han, J.F. Yuan, F.P. Xing, Z.X. Hu, F. Huang, H. Wu, H.L. Shi, T. Zhang and X.J. Wu . Early astragaloside IV administration attenuates experimental autoimmune encephalomyelitis in mice by suppressing the maturation and function of dendritic cells. Life Sci. 249: 117448, 2020a. Crossref, Medline, ISIGoogle Scholar
    • Yang, L., F.P. Xing, X.Y. Han, Q. Li, H. Wu, H.L. Shi, Z.T. Wang, F. Huang and X.J. Wu . Astragaloside IV regulates differentiation and induces apoptosis of activated CD4+ T cells in the pathogenesis of experimental autoimmune encephalomyelitis. Toxicol. Appl. Pharmacol. 362: 105–115, 2019. Crossref, Medline, ISIGoogle Scholar
    • Yang, T., X. Li, J. Yu, X. Deng, P.X. Shen, Y.B. Jiang, L. Zhu, Z.Z. Wang and Y. Zhang . Eriodictyol suppresses Th17 differentiation and the pathogenesis of experimental autoimmune encephalomyelitis. Food Funct. 11: 6875–6888, 2020b. Crossref, Medline, ISIGoogle Scholar
    • Zhao, M., D. Sun, Y. Guan, Z. Wang, D. Sang, M. Liu, Y. Pu, X. Fang, D. Wang, A. Huang, X. Bi, L. Cao and C. He. Disulfiram and diphenhydramine hydrochloride upregulate miR-30a to suppress IL-17-associated autoimmune inflammation. J. Neurosci. 36: 9253–9266, 2016. Crossref, Medline, ISIGoogle Scholar
    • Zhou, L., J.E. Lopes, M.M. Chong, I. I. Ivanov, R. Min, G.D. Victora, Y. Shen, J. Du, Y.P. Rubtsov, A.Y. Rudensky, S.F. Ziegler and D.R. Littman . TGF-beta-induced Foxp3 inhibits Th17 cell differentiation by antagonizing RORgammat function. Nature 453: 236–240, 2008. Crossref, Medline, ISIGoogle Scholar
    • Zúñiga, L.A., R. Jain, C. Haines and D.J. Cua . Th17 cell development: From the cradle to the grave. Immunol. Rev. 252: 78–88, 2013. Crossref, Medline, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    Check out our Chinese Medicine Titles today.
    Includes titles by Nobel Winner, Tu You You and more!