MAKING A DISCRETE DYNAMICAL SYSTEM CHAOTIC: THEORETICAL RESULTS AND NUMERICAL SIMULATIONS
Abstract
In this paper, we study state-feedback controller design for controlling the Lyapunov exponents of an n-dimensional dynamical system. We examine some theoretical results and perform numerical simulations for systems with and without noise influence. The controlled Lyapunov exponents are asymptotically normally distributed if the system has noisy inputs. Computer simulations on finite samples are all consistent with the theoretical results.