World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

The Rate of Convergence of a NLM Based on F–B NCP for Constrained Optimization Problems Without Strict Complementarity

    https://doi.org/10.1142/S0217595915500128Cited by:1 (Source: Crossref)

    It is well-known that the linear rate of convergence can be established for the classical augmented Lagrangian method for constrained optimization problems without strict complementarity. Whether this result is still valid for other nonlinear Lagrangian methods (NLM) is an interesting problem. This paper proposes a nonlinear Lagrangian function based on Fischer–Burmeister (F–B) nonlinear complimentarity problem (NCP) function for constrained optimization problems. The rate of convergence of this NLM is analyzed under the linear independent constraint qualification and the strong second-order sufficient condition without strict complementarity when subproblems are assumed to be solved exactly and inexactly, respectively. Interestingly, it is demonstrated that the Lagrange multipliers associating with inactive inequality constraints at the local minimum point converge to zeros superlinearly. Several illustrative examples are reported to show the behavior of the NLM.