World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

On Proper Separation Theorems by Means of the Quasi-Relative Interior with Applications

    https://doi.org/10.1142/S021759592350032XCited by:1 (Source: Crossref)

    In this paper, we establish several proper separation theorems for an element and a convex set and for two convex sets in terms of their quasi-relative interiors. Then, we prove that the separation theorem given by [Cammaroto, F and B Di Bella (2007). On a separation theorem involving the quasi-relative. Proceedings of the Edinburgh Mathematical Society, 50(3), 605–610] in Theorem 2.5, is in fact a proper separation theorem for two convex sets in which the classical interior is replaced by the quasi-relative interior. Besides, we extend some known results in the literature, such as [Adán, M and V Novo (2004). Proper efficiency in vector optimization on real linear spaces. Journal of Optimization Theory and Applications, 121, 515–540] in Theorem 2.1 and [Edwards, R (1965). Functional Analysis: Theory and Applications. New York: Reinhart and Winston] in Corollary 2.2.2, through the quasi-relative interior and the quasi-interior, respectively. As an application, we provide Karush–Kuhn–Tucker multipliers for quasi-relative solutions of vector optimization problems. Several examples are given to illustrate the obtained results.