Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

SEARCH GUIDE  Download Search Tip PDF File

  • articleNo Access

    On Proper Separation Theorems by Means of the Quasi-Relative Interior with Applications

    In this paper, we establish several proper separation theorems for an element and a convex set and for two convex sets in terms of their quasi-relative interiors. Then, we prove that the separation theorem given by [Cammaroto, F and B Di Bella (2007). On a separation theorem involving the quasi-relative. Proceedings of the Edinburgh Mathematical Society, 50(3), 605–610] in Theorem 2.5, is in fact a proper separation theorem for two convex sets in which the classical interior is replaced by the quasi-relative interior. Besides, we extend some known results in the literature, such as [Adán, M and V Novo (2004). Proper efficiency in vector optimization on real linear spaces. Journal of Optimization Theory and Applications, 121, 515–540] in Theorem 2.1 and [Edwards, R (1965). Functional Analysis: Theory and Applications. New York: Reinhart and Winston] in Corollary 2.2.2, through the quasi-relative interior and the quasi-interior, respectively. As an application, we provide Karush–Kuhn–Tucker multipliers for quasi-relative solutions of vector optimization problems. Several examples are given to illustrate the obtained results.