World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

GENERALIZING THE NOETHER THEOREM FOR HOPF-ALGEBRA SPACETIME SYMMETRIES

    https://doi.org/10.1142/S0217732307024280Cited by:59 (Source: Crossref)

    Over these past few years several quantum-gravity research groups have been exploring the possibility that in some Planck-scale nonclassical descriptions of spacetime one or another form of nonclassical spacetime symmetries might arise. One of the most studied scenarios is based on the use of Hopf algebras, but previous attempts were not successful in deriving constructively the properties of the conserved charges one would like to obtain from the Hopf structure, and this in turn did not allow a crisp physical characterization of the new concept of spacetime symmetry. Working within the example of κ-Minkowski noncommutative spacetime, known to be particularly troublesome from this perspective, we observe that these past failures in the search of the charges originated from not recognizing the crucial role that the noncommutative transformation parameters play in the symmetry analysis. We show that, if indeed one introduces appropriate noncommutative transformation parameters, all the steps of the Noether analysis can be easily performed, obtaining an explicit formula for the charges carried by fields that are solutions of the equation of motion.