World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

INTEGRABLE ASPECTS AND SOLITON-LIKE SOLUTIONS OF AN INHOMOGENEOUS COUPLED HIROTA–MAXWELL–BLOCH SYSTEM IN OPTICAL FIBERS WITH SYMBOLIC COMPUTATION

    https://doi.org/10.1142/S0217732310032688Cited by:1 (Source: Crossref)

    For describing wave propagation in an inhomogeneous erbium-doped nonlinear fiber with higher-order dispersion and self-steepening, an inhomogeneous coupled Hirota–Maxwell–Bloch system is considered with the aid of symbolic computation. Through Painlevé singularity structure analysis, the integrable condition of such a system is analyzed. Via the Painlevé-integrable condition, the Lax pair is explicitly constructed based on the Ablowitz–Kaup–Newell–Segur scheme. Furthermore, the analytic soliton-like solutions are obtained via the Darboux transformation which makes it exercisable to generate the multi-soliton solutions in a recursive manner. Through the graphical analysis of some obtained analytic one- and two-soliton-like solutions, our concerns are mainly on the envelope soliton excitation, the propagation features of optical solitons and their interaction behaviors in actual fiber communication. Finally, the conservation laws for the system are also presented.