World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

SINGLE/DOUBLE-SPIN ASYMMETRY MEASUREMENTS OF SEMI-INCLUSIVE PION ELECTRO-PRODUCTION ON A TRANSVERSELY POLARIZED 3He TARGET THROUGH DEEP INELASTIC SCATTERING

    https://doi.org/10.1142/S0217732312300212Cited by:0 (Source: Crossref)

    Parton distribution functions, which represent the flavor and spin structure of the nucleon, provide invaluable information in illuminating quantum chromodynamics in the confinement region. Among various processes that measure such parton distribution functions, semi-inclusive deep inelastic scattering is regarded as one of the golden channels to access transverse momentum dependent parton distribution functions, which provide a 3D view of the nucleon structure in momentum space. The Jefferson Lab experiment E06-010 focuses on measuring the target single and double spin asymmetries in the reaction with a transversely polarized 3He target in Hall A with a 5.89 GeV electron beam. A leading pion and the scattered electron are detected in coincidence by the left High-Resolution Spectrometer at 16° and the BigBite spectrometer at 30° beam right, respectively. The kinematic coverage concentrates in the valence quark region, x ~ 0.1–0.4, at Q2 ~ 1–3 GeV2. The Collins and Sivers asymmetries of 3He and neutron are extracted. In this review, an overview of the experiment and the final results are presented. Furthermore, an upcoming 12-GeV program with a large acceptance solenoidal device and the future possibilities at an electron–ion collider are discussed.