World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ON THE VARIABLE FINE STRUCTURE CONSTANT, STRINGS AND MAXIMAL-ACCELERATION PHASE SPACE RELATIVITY

    https://doi.org/10.1142/S0217751X0301646XCited by:7 (Source: Crossref)

    We present a new physical model that links the maximum speed of light with the minimal Planck scale into a maximal-acceleration relativity principle in the space–time tangent bundle and in phase spaces (cotangent bundle). The maximal proper-acceleration bound is a = c2/Λ in full agreement with the old predictions of Caianiello, the Finslerian geometry point of view of Brandt and more recent results in the literature. The group transformation laws of this maximal-acceleration phase space relativity theory under velocity and acceleration boosts are analyzed in full detail. For pure acceleration boosts it is shown why the minimal Planck-areas (maximal string tension) are universal invariant quantities in any frame of reference. Inspired by the maximal-acceleration corrections to the Lamb shifts of one-electron atoms by Lambiase, Papini and Scarpetta, we derive the exact integral equation that governs the renormalization-group-like scaling dependence of the fractional change of the fine structure constant as a function of the cosmological redshift factor and a cutoff scale Lc, where the maximal acceleration relativistic effects are dominant. A particular physical model exists dominated entirely by the vacuum energy, when the cutoff scale is the Planck scale, with ΩΛ = 1. The cosmological implications of this extreme case scenario are studied.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!