World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

BORN'S RECIPROCAL GENERAL RELATIVITY THEORY AND COMPLEX NON-ABELIAN GRAVITY AS GAUGE THEORY OF THE QUAPLECTIC GROUP: A NOVEL PATH TO QUANTUM GRAVITY

    https://doi.org/10.1142/S0217751X08039669Cited by:9 (Source: Crossref)

    Born's reciprocal relativity in flat space–times is based on the principle of a maximal speed limit (speed of light) and a maximal proper force (which is also compatible with a maximal and minimal length duality) and where coordinates and momenta are unified on a single footing. We extend Born's theory to the case of curved space–times and construct a reciprocal general relativity theory (in curved space–times) as a local gauge theory of the quaplectic group and given by the semidirect product , where the non-Abelian Weyl–Heisenberg group is H(1, 3). The gauge theory has the same structure as that of complex non-Abelian gravity. Actions are presented and it is argued why such actions based on Born's reciprocal relativity principle, involving a maximal speed limit and a maximal proper force, is a very promising avenue to quantize gravity that does not rely in breaking the Lorentz symmetry at the Planck scale, in contrast to other approaches based on deformations of the Poincaré algebra, quantum groups. It is discussed how one could embed the quaplectic gauge theory into one based on the U(1, 4), U(2, 3) groups where the observed cosmological constant emerges in a natural way. We conclude with a brief discussion of complex coordinates and Finsler spaces with symmetric and nonsymmetric metrics studied by Eisenhart as relevant closed-string target space backgrounds where Born's principle may be operating.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!