World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EXTENSION OF THE FREQUENCY-RANGE OF INTERFEROMETERS FOR THE "MAGNETIC" COMPONENTS OF GRAVITATIONAL WAVES?

    https://doi.org/10.1142/S0217751X07036452Cited by:6 (Source: Crossref)

    Recently, with an enlightening treatment, Baskaran and Grishchuk have shown the presence and importance of the so-called "magnetic" components of gravitational waves (GW's), which have to be taken into account in the context of the total response functions of interferometers for GW's propagating from arbitrary directions. In this paper the analysis of the response functions for the magnetic components is generalized in its full frequency dependence, while in the work of Baskaran and Grishchuk the response functions were computed only in the approximation of wavelength much larger than the linear dimensions of the interferometer. It is also shown that the response functions to the magnetic components grow at high frequencies, differently from the values of the response functions to the well-known ordinary components that decrease at high frequencies. Thus the magnetic components could in principle become the dominant part of the signal at high frequencies. This is important for a potential detection of the signal at high frequencies and confirms that the magnetic contributions must be taken into account in the data analysis. More, the fact that the response functions of the magnetic components grow at high frequencies shows that, in principle, the frequency-range of Earth-based interferometers could extend to frequencies over 10000 Hz.

    PACS: 04.80.Nn, 04.80.-y, 04.25.Nx
    You currently do not have access to the full text article.

    Recommend the journal to your library today!