Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Twists, realizations and Hopf algebroid structure of κ-deformed phase space

    https://doi.org/10.1142/S0217751X14500225Cited by:30 (Source: Crossref)

    The quantum phase space described by Heisenberg algebra possesses undeformed Hopf algebroid structure. The κ-deformed phase space with noncommutative coordinates is realized in terms of undeformed quantum phase space. There are infinitely many such realizations related by similarity transformations. For a given realization, we construct corresponding coproducts of commutative coordinates and momenta (bialgebroid structure). The κ-deformed phase space has twisted Hopf algebroid structure. General method for the construction of twist operator (satisfying cocycle and normalization condition) corresponding to deformed coalgebra structure is presented. Specially, twist for natural realization (classical basis) of κ-Minkowski space–time is presented. The cocycle condition, κ-Poincaré algebra and R-matrix are discussed. Twist operators in arbitrary realizations are constructed from the twist in the given realization using similarity transformations. Some examples are presented. The important physical applications of twists, realizations, R-matrix and Hopf algebroid structure are discussed.

    PACS: 02.40.Gh, 11.10.Nx, 11.30.Cp, 02.20.Uw
    You currently do not have access to the full text article.

    Recommend the journal to your library today!