Loading [MathJax]/jax/output/CommonHTML/jax.js
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Modified Lorentz transformations in deformed special relativity

    https://doi.org/10.1142/S0217751X17500865Cited by:0 (Source: Crossref)

    We have extended a recent approach to Deformed Special Relativity based on deformed dispersion laws, entailing modified Lorentz transformations and, at the same time, noncommutative geometry and intrinsically discrete space–time. In so doing we have obtained the explicit form of the modified Lorentz transformations for a special class of modified momentum-energy relations often found in literature and arising from quantum gravity and elementary particle physics. Actually, our theory looks as a very simple and natural extension of special relativity to include a momentum cutoff at the Planck scale. In particular, the new Lorentz transformations do imply that for high boost speed (Vc) the deformed Lorentz factor does not diverge as in ordinary relativity, but results to be upper bounded by a large finite value of the order of the ratio between the Planck mass and the particle mass. We have also predicted that a generic boost leaves unchanged Planck energy and momentum, which result invariant with respect to any reference frame. Finally, through matrix deformation functions, we have extended our theory to more general cases with dispersion laws containing momentum-energy mixed terms.

    PACS: 03.30.+p, 11.30.Cp, 11.55.Fv
    You currently do not have access to the full text article.

    Recommend the journal to your library today!