Distribution law of the Dirac eigenmodes in QCD
Abstract
The near-zero modes of the Dirac operator are connected to spontaneous breaking of chiral symmetry in QCD (SBCS) via the Banks–Casher relation. At the same time, the distribution of the near-zero modes is well described by the Random Matrix Theory (RMT) with the Gaussian Unitary Ensemble (GUE). Then, it has become a standard lore that a randomness, as observed through distributions of the near-zero modes of the Dirac operator, is a consequence of SBCS. The higher-lying modes of the Dirac operator are not affected by SBCS and are sensitive to confinement physics and related SU(2)CS and SU(2NF) symmetries. We study the distribution of the near-zero and higher-lying eigenmodes of the overlap Dirac operator within NF=2 dynamical simulations. We find that both the distributions of the near-zero and higher-lying modes are perfectly described by GUE of RMT. This means that randomness, while consistent with SBCS, is not a consequence of SBCS and is linked to the confining chromo-electric field.
You currently do not have access to the full text article. |
---|