World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

On the discrete version of the black hole solution

    https://doi.org/10.1142/S0217751X2050058XCited by:4 (Source: Crossref)

    A Schwarzschild-type solution in Regge calculus is considered. Earlier, we considered a mechanism of loose fixing of edge lengths due to the functional integral measure arising from integration over connection in the functional integral for the connection representation of the Regge action. The length scale depends on a free dimensionless parameter that determines the final functional measure. For this parameter and the length scale large in Planck units, the resulting effective action is close to the Regge action.

    Earlier, we considered the Regge action in terms of affine connection matrices as functions of the metric inside the 4-simplices and found that it is a finite-difference form of the Hilbert–Einstein action in the leading order over metric variations between the 4-simplices.

    Now we take the (continuum) Schwarzschild problem in the form where spherical symmetry is not set a priori and arises just in the solution, take the finite-difference form of the corresponding equations and get the metric (in fact, in the Lemaitre or Painlevé–Gullstrand like frame), which is nonsingular at the origin, just as the Newtonian gravitational potential, obeying the difference Poisson equation with a point source, is cutoff at the elementary length and is finite at the source.

    PACS: 04.20.-q, 04.60.Kz, 04.60.Nc, 04.70.Dy
    You currently do not have access to the full text article.

    Recommend the journal to your library today!