World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

EFFECTS OF Al, Ga-DOPING ON TRANSPARENT CONDUCTING PROPERTIES OF AMORPHOUS ZnO-SnO2 FILMS

    https://doi.org/10.1142/S0217979206040568Cited by:3 (Source: Crossref)

    ZnOSnO2 thin films were deposited on glass substrates (Corning#1737) by DC magnetron sputtering. In this works, we examined a doping effect on a ZnO target on transparent conducting properties. ZnO:Al(4wt%), and ZnO:Ga(6wt%) targets were used for a dopant-free ZnO target. Substrate temperature was held at 250°C. The current ratio δ was defined as IZn/IZ+ISn (ZnO target current divided by the sum of ZnO and SnO2 target currents). Compositions of as-deposited films were changed with the current ratio δ. In the ZnO-SnO2 system, amorphous transparent films appeared over the range of 0.33≤δ≤0.73. On the other hand, in the ZnO:Al(4wt%)-SnO2 and ZnO:Ga(6wt%)-SnO2 systems, they appeared over the range of 0.20≤δ≤0.80 and 0.33≤δ≤0.80, ≤δ≤ respectively. The minimum resistivity of amorphous films was about 3.0×10-2 Ωcm for all the systems. Al, Ga doping effect on film resistivity was not clear very much. But optical transparencies were 80-90% in visible region, 10% higher than those of ZnO-SnO2 system at average. Optical band gap for the films with the same current ratio δ also was enhanced by the Al, Ga doping.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!