World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

ORBITAL FORMING SIMULATION OF AUTOMOTIVE HUB BEARING USING THE EXPLICIT FINITE ELEMENT METHOD

    https://doi.org/10.1142/S0217979208047171Cited by:6 (Source: Crossref)

    In this paper, the orbital forming simulation of an automotive hub bearing was studied to predict forming conditions and performances using the explicit finite element method. To set up an efficient solution technique for the orbital forming, axisymmetric finite element models and 3D solid element models were numerically solved and compared to each other. The time scaling and mass scaling techniques were introduced to reduce the excessive computational time caused by small element size in case of the explicit finite element method. It was found from the numerical results on the orbital forming that the axisymmetric element models showed the similar results to the 3D solid element models in forming loads whereas the deformations at the bearing inner race were quite different. Finally the strains at the bearing inner race and the forming forces of the peen were measured by test for the same product used in the numerical analysis, and were compared with the 3D solid element results. It was shown that the test results were in good agreements with the numerical ones.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!