World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

NUMERICAL MODELING OF UNDERWATER EXPLOSION PROPERTIES FOR NONIDEAL EXPLOSIVES

    https://doi.org/10.1142/S021797920804716XCited by:1 (Source: Crossref)

    Underwater experiments for an ideal explosive, TNT, and two nonideal explosives, CETR emulsion and DXD-04, were performed, and numerically simulated. For TNT, calculations done by using program-burn models based on the rate-independent Chapman-Jouguet theory were in a good agreement with experimental results, which validated the wide use of program-burn models for ideal explosives. For CETR emulsion and DXD-04, experimental observations could be reproduced with high precision only when reaction rates were employed. These results demonstrated that detonation in nonideal explosives can be modeled only by using properly calibrated reaction rates.

    You currently do not have access to the full text article.

    Recommend the journal to your library today!