Investigation on structural, electronic, magnetic and thermodynamic properties of antiperovskites Mn3XC (X=Al, Zn and Ga)
Abstract
The structural, electronic, magnetic properties of Mn3XC (X=Al, Zn and Ga) antiperovskites have been investigated using first principles calculations based on Full-Potential Linearized Augmented Plane-Wave (FP-LAPW) method. Generalized Gradient Approximation with parameterization by Perdew (GGA-PBESol) is used to take into account the electron exchange–correlation interaction. Structural optimization is performed by fitting calculated data (energy-volume) to Birch–Murnaghan equation of state. Lattice constants increase in the order Mn3AlC→Mn3GaC→Mn3ZnC. Electronic results show that there is no bandgap near the Fermi level. While the magnetism in these compounds is derived mainly from Mn atom. Finally, thermodynamic properties, including bulk modulus, heat capacities, thermal expansion and Grüneisen parameter, are computed using quasi-harmonic Debye model and analyzed in detail.
You currently do not have access to the full text article. |
---|