World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Study of the polishing slurry dispersant for chemical mechanical polishing of 304 stainless steel

    https://doi.org/10.1142/S0217979222400264Cited by:1 (Source: Crossref)
    This article is part of the issue:

    To further clarify the effect of the polishing slurry dispersant on the chemical mechanical polishing (CMP) performance of 304 stainless steel, a series of tests were carried out. The correlation between the material removal rate (MRR), surface roughness of 304 stainless steel, dispersant composition, and their content was investigated under two kinds of polishing slurry (hydrogen peroxide oxidant and ferric chloride oxidant) conditions. The experimental results indicated that the MRR and surface roughness of 304 stainless steel arrived at the maximum when the content of sodium hexametaphosphate dispersant was 1.2% (wt) under the hydrogen peroxide–oxalic acid polishing slurry condition. The values of MRR and surface roughness were 146 nm/min and 10 nm, respectively. The MRR and surface roughness of 304 stainless also reached the maximum value as the content of the propanetriol dispersant was 1.2% (wt) under the ferric chloride–oxalic acid polishing slurry condition. However, the values of MRR and surface roughness were 457 nm/min and 22 nm, respectively. Therefore, sodium hexametaphosphate was recommended as the dispersant of hydrogen peroxide–oxalic acid polishing, and propanetriol was recommended as the dispersant of ferric chloride–oxalic acid polishing slurry condition, according to the above analysis. This study lays a theoretical foundation for the improvement of 304 stainless steel CMP performance.

    PACS: 68.35.−p
    You currently do not have access to the full text article.

    Recommend the journal to your library today!