World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Solitons, Bäcklund transformations, Lax pair and conservation laws for the nonautonomous mKdV–sinh-Gordon equation with time-dependent coefficients

    https://doi.org/10.1142/S0217984916500081Cited by:3 (Source: Crossref)

    The transition phenomenon of few-cycle-pulse optical solitons from a pure modified Korteweg–de Vries (mKdV) to a pure sine-Gordon regime can be described by the nonautonomous mKdV–sinh-Gordon equation with time-dependent coefficients. Based on the Bell polynomials, Hirota method and symbolic computation, bilinear forms and soliton solutions for this equation are obtained. Bäcklund transformations (BTs) in both the binary Bell polynomial and bilinear forms are obtained. By virtue of the BTs and Ablowitz–Kaup–Newell–Segur system, Lax pair and infinitely many conservation laws for this equation are derived as well.