World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Performance evaluation of 2D face recognition techniques under image processing attacks

    https://doi.org/10.1142/S0217984918502123Cited by:10 (Source: Crossref)

    Face recognition is a vastly researched topic in the field of computer vision. A lot of work have been done for facial recognition in two dimensions and three dimensions. The amount of work done with face recognition invariant of image processing attacks is very limited. This paper presents a total of three classes of image processing attacks on face recognition system, namely image enhancement attacks, geometric attacks and the image noise attacks. The well-known machine learning techniques have been used to train and test the face recognition system using two different databases namely Bosphorus Database and University of Milano Bicocca three-dimensional (3D) Face Database (UMBDB). Three classes of classification models, namely discriminant analysis, support vector machine and k-nearest neighbor along with ensemble techniques have been implemented. The significance of machine learning techniques has been mentioned. The visual verification has been done with multiple image processing attacks.