World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Language identification framework in code-mixed social media text based on quantum LSTM — the word belongs to which language?

    https://doi.org/10.1142/S0217984920500864Cited by:27 (Source: Crossref)

    Machine learning (ML) architectures based on neural model have garnered considerable attention in the field of language classification. Code-mixing is a common phenomenon on social networking sites for exhibiting opinion on a topic. The code-mixed text is the approach of mixing two or more languages. This paper describes the application of the code-mixed index in Indian social media texts and compares the complexity to identify language at the word level using Bi-directional Long Short-Term Memory model. The major contribution of the work is to propose a technique for identifying the language of Hindi–English code-mixed data used in three social media platforms namely, Facebook, Twitter and WhatsApp. Here, we demonstrate that a special class of quantum LSTM network model is capable of learning and accurately predicting the languages used in social media texts. Our work paves the way for future applications of machine learning methods in quantum dynamics without relying on the explicit form of the Hamiltonian.