World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Regularized sparse decomposition model for speech enhancement via convex distortion measure

    https://doi.org/10.1142/S0217984918502627Cited by:4 (Source: Crossref)

    An important stage in speech enhancement is to estimate noise signal which is a difficult task in non-stationary and low signal-to-noise conditions. This paper presents an iterative speech enhancement approach which requires no prior knowledge of noise and is based on low-rank sparse matrix decomposition using Gammatone filterbank and convex distortion measure. To estimate noise and speech, the noisy speech is decomposed into low-rank noise and sparse-speech parts by enforcing sparsity regularization. The exact distribution of noise signals and noise estimator is not required in this approach. The experimental results demonstrate that our approach outperforms competing methods and yields better overall speech quality and intelligibility. Moreover, composite objective measure reinforced a better performance in terms of residual noise and speech distortion in adverse noisy conditions. The time-varying spectral analysis validates significant reduction of the background noise.