World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

An efficient speaker recognition using quantum neural network

    https://doi.org/10.1142/S0217984918503840Cited by:8 (Source: Crossref)

    Speaker recognition is the technique to identify the identity of a person from statistical features obtained from speech signals. Many speaker recognition techniques have been designed and implemented so far to efficiently recognize the speaker. From the existing review, it is found that the existing speaker recognition techniques suffer from the over-fitting issues. Therefore, to overcome the over-fitting issue in this paper, we design, a novel ensemble-based quantum neural network. It selects one base model (i.e. expert) for each query, and concentrates on inductive bias reduction. A set of quantum neural networks are trained by considering different kinds of quantum features and are afterwards used to recognize the speaker. In the end, ensembling is used to combine these classification results. Extensive experiments have been carried out by considering the proposed technique and existing competitive machine learning-based speaker recognition techniques on speaker recognition data. It is observed that the proposed technique outperforms existing speaker recognition techniques in terms of accuracy and sensitivity by 1.371% and 1.291%, respectively.