Processing math: 100%
World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Effect of carbonization on mechanical properties of halloysite nanotube-FRP nanocomposites with different morphological structures

    https://doi.org/10.1142/S0217984919400219Cited by:0 (Source: Crossref)
    This article is part of the issue:

    In this study, halloysite nanotubes (HNTs), an environmentally friendly inorganic nanomaterial, was added to epoxy matrix glass and basalt fiber reinforced plastics (GFRP and BFRP) by heat treatment of HNTs with crystalline and amorphous structure at 700C and 1000C. Their interfacial bonding strength and effect of HNTs before and after carbonization by flame were analyzed. We found that the HNT/epoxy formed a physical barrier on the surface because of the char generated by carbonization. The barrier showed excellent thermal stability and limiting oxygen index in BFRP. The flexural strength after carbonization was low in the amorphous 1000HTHNT-BFRP with strong interfacial bonding. In other words, the morphological structure of the HNTs helped the improvement of the interfacial bonding strength; hence, the reinforcing effect of the HNTs on the thermal stability and mechanical strength before and after carbonization can be controlled.