World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Rapid in situ remediation of glass fiber wind turbine blades in low temperature environment

    https://doi.org/10.1142/S0217984919400220Cited by:3 (Source: Crossref)
    This article is part of the issue:

    The objective of this study was to investigate a novel remediation methodology for GFRP manufactured wind turbine blades for improving their maintenance under different environment and loading conditions. The fundamental specimens that were fabricated using wet prepreg manufacture technic were pre-damaged then repaired by attaching external glass fiber patches. The repair patches were penetrated by epoxy or UV resin, followed by ambient, 80C80C curing or ultraviolet irradiation curing, respectively. Tensile, flexure, short beam shear tests and end notch flexure (ENF) test were conducted both in room and low temperature according to ASTM standards. The UV cured resin repaired specimens revealed better properties than epoxy in low temperature. The higher external-fundamental laminate interfacial bonding strength and lower velocity of crack diffusion, as well as the initiation of thermal residual stress, resulted in better mechanical properties under low temperature environment. In addition, the outstanding performance of UV resin was thought as the high crystallinity content curing by ultraviolet irradiation and the great inherent strength of itself.