World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Effect of Mg dopant on SnO2 thin films grown by spray pyrolysis technique

    https://doi.org/10.1142/S0217984919500301Cited by:4 (Source: Crossref)

    The undoped and magnesium (Mg)-doped Tin (IV) oxide (SnO2) thin films were grown on glass substrate by spray pyrolysis technique. In order to observe the effect on the optical, structural, morphological, and hydrogen (H2) gas answer properties of SnO2 by Mg doping, X-ray diffractometer (XRD), ultraviolet–visible (UV) spectrometer, scanning electron microscope (SEM) and hydrogen (H2) gas, measurements were taken. The absorption measurements of undoped and Mg-doped SnO2 thin films demonstrated that band gaps varied with the changing Mg dopant ratio and this variation may be from Burstein–Moss (BM) effect. XRD measurements showed that the samples were tetragonal structures and have (110), (101), (200), (211), (220), (310) planes. The surface morphology of SnO2 showed that samples was affected considerably by Mg dopant. The H2 gas sensor response improves with the increase of 1%, 2% and 3% Mg doping ratio in SnO2.