World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Anomalous diffusion equation using a new general fractional derivative within the Miller–Ross kernel

    https://doi.org/10.1142/S0217984920502899Cited by:4 (Source: Crossref)

    In view of the generalization of Miller–Ross kernel in the sense of Riemann–Liouville type, we propose the new definitions of the general fractional integral (GFI) and general fractional derivative (GFD) to discuss the anomalous diffusion equation, which is distinct from those classic calculus operators. The obtained analytical solution of the application described in the graph is effective and accurate making the use of Laplace transform.