World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Dynamic behavior of fractional-order memristive time-delay system and image encryption application

    https://doi.org/10.1142/S0217984921502717Cited by:6 (Source: Crossref)

    This paper presents dynamic behavior of a fractional-order memristive time-delay system and its application in image encryption. First, a fractional-order memristive time-delay system is proposed, and the stability and bifurcation behaviors of the system are theoretically analyzed. Some limited conditions for describing the stability interval and switching between different dynamic behaviors are derived. Second, the dynamic characteristics of the system are analyzed through the coexisting attractors, coexisting bifurcation diagrams, the Largest Lyapunov exponents (LLE), the 0-1 test. When parameters change, such as time delay and fractional order, the system transits from steady state to periodic state, single scroll chaotic state, double scroll chaotic state. Furthermore, an image encryption scheme based on the fractional-order memristive time-delay system is introduced, and some statistical features are analyzed. Finally, numerical simulations verify the validity of the theoretical analysis and safety of the image encryption scheme based on the fractional-order delayed memristive chaotic system.