World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Detection of accumulated continuously ethanol concentration by ZnO–SnO2 composite nanorods sensor

    https://doi.org/10.1142/S0217984921503954Cited by:1 (Source: Crossref)

    ZnO–SnO2 composite nanorods with rough surfaces were synthesized via a coaxially nested needle electrospinning method. The morphology and nanostructure were characterized by scanning electron microscopy, atomic force microscope, EDS mapping, nitrogen physical adsorption, and X-ray diffraction. The synthesis mechanisms of ZnO–SnO2 nanorods were discussed, which combined the gas sensitivity advantages of different materials. ZnO–SnO2 nanorods sensor with good ethanol gas sensitivity achieved accurate measurement of continuous ethanol concentration. The sensor exhibited good selectivity to ethanol in the presence of formaldehyde, methanol, acetone, acetic acid, benzene, and xylene at 290C. The response and recovery time to 100 ppm ethanol were about 13 and 35 s, respectively. The energy band, barrier, charge transfer of ZnO–SnO2 composite material was discussed, and its optimization of gas sensitivity was analyzed in detail.

    References

    Remember to check out the Most Cited Articles!

    Boost your collection with these New Books in Condensed Matter Physics today!