World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Exponential passive filter design for switched neural networks with time-delay and reaction-diffusion terms

    https://doi.org/10.1142/S0217984921504340Cited by:2 (Source: Crossref)

    This paper investigates the problem of exponential passive filter design for switched neural networks with time-delay and reaction-diffusion terms. With the aid of a suitable Lyapunov–Krasovskii functional and some inequalities, a linear matrix inequality-based design method is developed that not only makes the filtering error system exponentially stable but also forces it to be passive from external interference to output error. Then, the filter design is extended to the complex-valued case via separating the system into real-valued and complex-valued parts. Finally, a numerical example is utilized to illustrate the effectiveness of the filter design methods for the real-valued and complex-valued cases, respectively.

    References

    Remember to check out the Most Cited Articles!

    Boost your collection with these New Books in Condensed Matter Physics today!