World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Unsteady characteristics of jet combustion in a supersonic combustor with a micro-vortex generator

    https://doi.org/10.1142/S0217984921504467Cited by:1 (Source: Crossref)

    To clarify the effect of the micro-vortex generator on the unsteady characteristics of jet combustion, a set of experiments had been carried out in a cavity-based supersonic combustor. Based on the advanced combustion diagnosis techniques, the ignition process, initial cavity-stabilized flame and dynamic flame development at the initial equivalence ratio of 0.20 are revealed in detail. Although the ignition processes are identical, the time for the flame propagation process in the cavity can be shortened when an MVG (micro-vortex generator) is located properly upstream of the injection. The initial flame cannot be stabilized in the combustor if the MVG is too close to the injection. After achieving initial stable combustion, the chemical reactions in the flame front are more vigorous and the shear layer can be lifted a little higher in the experiment with an MVG. At the same dynamic fuel adjustment method, the flame can be stabilized in the combustor without an MVG while the flame is blown out with an MVG. Based on numerous experimental results, it is found that the MVG dwindles the adjustment range of the dynamic injection, which makes against the stability of the flame when the engine decreases the thrust.

    References

    Remember to check out the Most Cited Articles!

    Boost your collection with these New Books in Condensed Matter Physics today!