World Scientific
  • Search
  •   
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×
Our website is made possible by displaying certain online content using javascript.
In order to view the full content, please disable your ad blocker or whitelist our website www.worldscientific.com.

System Upgrade on Tue, Oct 25th, 2022 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at [email protected] for any enquiries.

Effect of contact barrier height on performances of BaSi2 heterojunction and homojunction solar cells

    https://doi.org/10.1142/S0217984921505217Cited by:5 (Source: Crossref)

    The effects of contact barrier height on performances of Si/BaSi2 p–n heterojunction, BaSi2 p–n homojunction and Si/BaSi2/Si p–i–n heterojunction were numerical calculated. Band energy diagram, built-in electric field, carrier generation and carrier transportation distributed in the devices are comprehensively investigated. BaSi2 p–n homojunction solar cells are very sensitive to front contact barrier height due to the high light absorption coefficient of front p-BaSi2 layer. Si/BaSi2 p–n heterojunction and BaSi2 p–n homojunction solar cells with donor concentration (ND) less than 1017 cm3 are apparently affected by back contact barrier height. The ideal α-Si/BaSi2/α-Si p–n solar cell achieves a high Voc of 1.131 V, suggesting a promising and alternative structure to gain excellent BaSi2-based solar cells once the Urbach tail states and defects can be effectively eliminated. The results help to fundamentally understand operation mechanism and provide intuitive guidance for achieving high-efficiency BaSi2 solar cells.

    References

    • 1. T. Nakamura, T. Suemasu, K. Takakura and F. Hasegawa, Appl. Phys. Lett. 81 (2002) 1032. Crossref, ISI, ADSGoogle Scholar
    • 2. K. Toh, T. Saito and T. Suemasu, J. Appl. Phys. 50 (2011) 068001. Crossref, ISIGoogle Scholar
    • 3. M. Kumar, N. Umezawa and M. Imai, Appl. Phys. Exp. 7 (2014) 071203. Crossref, ISIGoogle Scholar
    • 4. Y. Yamashita, C. M. R. Tobo, R. Santbergen, M. Zeman, O. Isabella and T. Suemasu, Sol. Energy Mater. Sol. C 203 (2021) 111181. Crossref, ISIGoogle Scholar
    • 5. K. O. Hara, N. Usami, K. Nakamura, R. Takabe, M. Baba, K. Toko and T. Suemasu, Appl. Phys. Exp. 6 (2013) 112302. Crossref, ISI, ADSGoogle Scholar
    • 6. R. Takabe, K. O. Hara, M. Baba, W. J. Du, N. Shimada, K. Toko, N. Usami and T.  Suemasu, J. Appl. Phys. 115 (2014) 193510. Crossref, ISI, ADSGoogle Scholar
    • 7. N. M. Shaalan, K. O. Hara, C. T. Trinh, Y. Nakagawa and N. Usami, Mater. Sci. Semicond. Process. 76 (2018) 37. Crossref, ISIGoogle Scholar
    • 8. W. J. Du, M. Baba, K. Toko, K. O. Hara, K. Watanabe, T. Sekiguchi, N. Usami and T. Suemasu, J. Appl. Phys. 115 (2014) 223701. Crossref, ISI, ADSGoogle Scholar
    • 9. M. Kobayashi, Y. Matsumoto, Y. Ichikawa, D. Tsukada and T. Suemasu, Appl. Phys. Exp. 1 (2008) 051403. Crossref, ISIGoogle Scholar
    • 10. M. A. Khan and T. Suemasu, Energy Proc. 124 (2017) 612. CrossrefGoogle Scholar
    • 11. K. O. Hara, Y. Hoshi, N. Usami, Y. Shiraki, K. Nakamura, K. Toko and T. Suemasu, Thin Solid Films 557 (2014) 90. Crossref, ISI, ADSGoogle Scholar
    • 12. S. Aonuki, Y. Yamashita, K. Toko and T. Suemasu, Jpn. J. Appl. Phys. 59 (2020) SFFA01. Crossref, ISIGoogle Scholar
    • 13. M. A. Khan, K. O. Hara, K. Nakamura, W. J. Du, M. Baba, K.  Toh, M. Suzuno, K.  Toko, N. Usami and T. Suemasu, J. Cryst. Growth 378 (2013) 201. Crossref, ISI, ADSGoogle Scholar
    • 14. M. A. Khan, K. O. Hara, W. J. Du, M. Baba and K. Nakamura, Appl. Phys. Lett. 102 (2013) 112107. Crossref, ISIGoogle Scholar
    • 15. K. Morita, M. Kobayashi and T. Suemasu, Thin Solid Films 515 (2007) 8216. Crossref, ISI, ADSGoogle Scholar
    • 16. Y. Imai and A. Watanabe, Intermetallics 18 (2010) 1432. Crossref, ISIGoogle Scholar
    • 17. Y. Imai and A. Watanabe, Thin Solid Films 515 (2007) 8219. Crossref, ISI, ADSGoogle Scholar
    • 18. T. Suemasu, Jpn. J. Appl. Phys. 54 (2015) 07JA01. Crossref, ISIGoogle Scholar
    • 19. Y. Inomata, T. Nakamura, T. Suemasu and F. Hasegawa, Jpn. J. Appl. Phys. 43 (2004) L478. Crossref, ISI, ADSGoogle Scholar
    • 20. K. O. Hara, Y. Nakagawa, T. Suemasu and N. Usami, Jpn. J. Appl. Phys. 54 (2015) 07JE02. Crossref, ISIGoogle Scholar
    • 21. S. Matsuno, R. Takabe, S. Yokoyama, K. Toko, M. Mesuda, H. Kuramochi and T.  Suemasu, Appl. Phys. Exp. 11 (2018) 071401. Crossref, ISIGoogle Scholar
    • 22. D. Tsukahara, S. Yachi, H. Takeuchi, R. Takabe, W. J. Du, M. Baba, Y. P. Li, K. Toko, N. Usami and T. Suemasu, Appl. Phys. Lett. 108 (2016) 152101. Crossref, ISI, ADSGoogle Scholar
    • 23. S. Yachi, R. Takabe, H. Takeuchi, K. Toko and T. Suemasu, Appl. Phys. Lett. 109 (2016) 072103. Crossref, ISIGoogle Scholar
    • 24. T. G. Deng, T. Sato, Z. Xu, R. Takabe, S. Yachi, Y. Yamashita, K. Toko and T.  Suemasu, Appl. Phys. Exp. 11 (2018) 062301. Crossref, ISIGoogle Scholar
    • 25. Q. R. Deng, H. Chen, H. Liao, L. Chen, G. M. Wang, S. G. Wang and Y. L. Shen, J. Phys. D, Appl. Phys. 52 (2019) 075501. Crossref, ISIGoogle Scholar
    • 26. K. Kodama, Y. Yamashita, K. Toko and T. Suemasu, Appl. Phys. Exp. 12 (2019) 041005. Crossref, ISIGoogle Scholar
    • 27. R. Takabe, W. J. Du, K. Ito, H. Takeuchi, K. Toko, S. Ueda, A. Kimura and T.  Suemasu, Jpn. J. Appl. Phys. 119 (2016) 025306. Crossref, ISIGoogle Scholar
    • 28. R. Takabe, H. Takeuchi, W. J. Du, K. Ito, K. Toko, S. Ueda, A. Kimura and T.  Suemasu, Jpn. J. Appl. Phys. 119 (2016) 165304. Crossref, ISIGoogle Scholar
    • 29. P. J. McElheny, J. K. Arch, H. S. Lin and S. J. Fonash, J. Appl. Phys. 64 (1988) 1254. Crossref, ISI, ADSGoogle Scholar
    • 30. L. Chen, H. Chen, Q. R. Deng, G. M. Wang, S. G. Wang, Solid State Electron 149 (2018) 46. Crossref, ISI, ADSGoogle Scholar
    • 31. H. Liao, Q. R. Deng, Y. L. Shen, G. M. Wang, S. G. Wang and Y. M. Ma, Sol. Energy 201 (2020) 857. Crossref, ISI, ADSGoogle Scholar
    • 32. D. B. Migas, V. L. Shaposhnikov and V. E. Borisenko, Phys. Status Solidi B 244 (2007) 2611. Crossref, ADSGoogle Scholar
    • 33. Y. Gao, H. W. Liu, Y. Lin and G. Shao, Thin Solid Films 519 (2011) 8490. Crossref, ISI, ADSGoogle Scholar
    • 34. Y. L. Tian, A. R. B. Montes, L. Vančo, M. Čaplovičová, P. Vogrinčič, P. Šutta, L.  Satrapinskyy, M. Zeman and O. Isabella, Adv. Mater. Interfaces 7 (2020) 2000887. Crossref, ISIGoogle Scholar
    • 35. K. Kodama, R. Takabe, T. G. Deng, K. Toko and T. Suemasu, Jpn. J. Appl. Phys. 57 (2018) 050310. Crossref, ISIGoogle Scholar
    • 36. K. Kodama, R. Takabe, S. Yachi, K. Toko and T. Suemasu, Jpn. J. Appl. Phys. 57 (2018) 031202. Crossref, ISIGoogle Scholar
    • 37. X. P. Han and G. S. Shao, J. Mater. Chem. C 3 (2015) 530. CrossrefGoogle Scholar
    • 38. Q. R. Deng, Z. Wang, S. G. Wang and G. S. Shao, Sol. Energy 158 (2017) 654. Crossref, ISI, ADSGoogle Scholar
    • 39. Z. H. Xu, K. Gotoh, T. G. Deng, T. Sato, R. Takabe, K. Toko, N. Usami and T.  Suemasu, AIP Adv. 8 (2018) 055306. Crossref, ISIGoogle Scholar
    Remember to check out the Most Cited Articles!

    Boost your collection with these New Books in Condensed Matter Physics today!