World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Investigation of thermodynamics characteristics of ternary hybrid nanofluid flow over a stretching sheet

    https://doi.org/10.1142/S0217984924500799Cited by:3 (Source: Crossref)

    This paper considers two-dimensional electrically conducting and incompressible ternary hybrid nanofluid flow on a stretching sheet with the convective boundary condition and heat source effect. Relevant similarity formulas are effectuated in converting the governing equations into a system of ordinary differential equations (ODEs) and are further treated numerically using the spectral quasilinearization method (SQLM), with error analysis. The prominent dimensionless parameters controlling the flow, and heat transfer characteristics are discussed. The results of this study show that Eckert number, heat source parameter, and magnetic effect boost the temperature profile. This work expected significant information for the future applications of innovative heat transfer devices, as well as a valuable reference for researchers to study flow behavior under various assumptions.