World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.

Analysis of optical solitons propagation in the dual-mode resonant nonlinear Schrödinger dynamical equation with assorted nonlinear interactions

    https://doi.org/10.1142/S0217984924504335Cited by:2 (Source: Crossref)

    This research explores the dual-mode manifestation within the nonlinear Schrödinger equation, elucidating the amplification or absorption of paired waves. This study delves into the simultaneous generation of two distinct waves associated with the dual-mode phenomenon with three crucial parameters: phase velocity, nonlinearity and dispersive factor. The resulting wave phenomena from these solutions have implications across various fields, including fluid dynamics, water wave mechanics, ocean engineering and scientific inquiry. The study employs the modified Sardar sub-equation method to obtain the optical soliton solutions, encompassing various types such as dark, bright, singular, combo dark–singular, periodic singular and dark–bright solitons. The obtained results highlight the reliability and simplicity of the modified Sardar sub-equation method. Additionally, the paper delves into the parametric conditions crucial for shaping and sustaining these solitons. The research explores the interaction of dual waves and the variation in wave speed. Furthermore, dynamic phenomena are illustrated, and the physical implications of the solutions are interpreted using 3D and 2D plots with different parameter values.