Dynamical behavior of the fractional nonlinear Kadoma equation in plasma physics and optics
Abstract
The nonlinear Kadoma equation with M-truncated derivatives (NLKE-MTD) is taken into consideration here. By using generalized Riccati equation method (GRE method) and Jacobi elliptic function method, new hyperbolic, rational, trigonometric and elliptic solutions are discovered. Because the NLKE is widely employed in optics, fluid dynamics and plasma physics, the resulting solutions may be used to analyze a wide variety of important physical phenomena. The dynamic behaviors of the different derived solutions are interpreted using 3D and 2D graphs to explain the effects of M-truncated derivatives. We may conclude that the surface moves to the right as the order of M-truncated derivatives increases.