World Scientific
Skip main navigation

Cookies Notification

We use cookies on this site to enhance your user experience. By continuing to browse the site, you consent to the use of our cookies. Learn More
×

System Upgrade on Tue, May 28th, 2024 at 2am (EDT)

Existing users will be able to log into the site and access content. However, E-commerce and registration of new users may not be available for up to 12 hours.
For online purchase, please visit us again. Contact us at customercare@wspc.com for any enquiries.
SPECIAL ISSUE: Getting Across the Border Between the Natural and the Artificial Worlds; Edited by G. Sanniti di BajaNo Access

POSE-EXPRESSION NORMALIZATION FOR FACE RECOGNITION USING CONNECTED COMPONENTS ANALYSIS

    https://doi.org/10.1142/S0218001406005010Cited by:0 (Source: Crossref)

    Accurate measurement of poses and expressions can increase the efficiency of recognition systems by avoiding the recognition of spurious faces. This paper presents a novel and robust pose-expression invariant face recognition method in order to improve the existing face recognition techniques. First, we apply the TSL color model for detecting facial region and estimate the vector X-Y-Z of face using connected components analysis. Second, the input face is mapped by a deformable 3D facial model. Third, the mapped face is transformed to the frontal face which appropriates for face recognition by the estimated pose vector and action unit of expression. Finally, the damaged regions which occur during the process of normalization are reconstructed using PCA. Several empirical tests are used to validate the application of face detection model and the method for estimating facial poses and expression. In addition, the tests suggest that recognition rate is greatly boosted through the normalization of the poses and expression.